000877604 001__ 877604
000877604 005__ 20240709081915.0
000877604 0247_ $$2doi$$a10.1016/j.apenergy.2019.05.010
000877604 0247_ $$2ISSN$$a0306-2619
000877604 0247_ $$2ISSN$$a1872-9118
000877604 0247_ $$2altmetric$$aaltmetric:66798150
000877604 0247_ $$2WOS$$aWOS:000497978100001
000877604 037__ $$aFZJ-2020-02319
000877604 082__ $$a620
000877604 1001_ $$0P:(DE-HGF)0$$aSchilling, Johannes$$b0
000877604 245__ $$aIntegrated design of working fluid and organic Rankine cycle utilizing transient exhaust gases of heavy-duty vehicles
000877604 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000877604 3367_ $$2DRIVER$$aarticle
000877604 3367_ $$2DataCite$$aOutput Types/Journal article
000877604 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592809865_26501
000877604 3367_ $$2BibTeX$$aARTICLE
000877604 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877604 3367_ $$00$$2EndNote$$aJournal Article
000877604 520__ $$aHeavy-duty vehicles waste a major part of their fuel energy in the exhaust gas. To recover energy from the exhaust gas, Organic Rankine Cycles are a promising technology. However, both, the Organic Rankine Cycle and its working fluid have to be tailored to the transient energy input by the exhaust gas. For this purpose, we developed the so-called 1-stage Continuous-Molecular Targeting - Computer-aided Molecular Design (1-stage CoMT-CAMD) method. 1-stage CoMT-CAMD integrates the design of novel working fluids as degree of freedom into the process optimization. However, so far, 1-stage CoMT-CAMD is limited to a nominal operating point. In this work, we enable the integrated design for transient heat sources by combining 1-stage CoMT-CAMD with aggregation techniques. Aggregation techniques allow us to represent the many operating points due to the transient heat source by a few aggregated operating points serving as input for the integrated design. A subsequent assessment of the identified working fluids ensures safety and environmental friendliness. The resulting algorithm is applied to the design of an Organic Rankine Cycle on heavy-duty vehicles using the VECTO long haul cycle to characterize the transient exhaust gas. For this case study, 6 aggregated operating points are sufficient to represent the transient exhaust gas accurately. The optimal identified working fluid is ethyl formate and increases the net power output by 30% compared to the commonly used working fluid ethanol.
000877604 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877604 588__ $$aDataset connected to CrossRef
000877604 7001_ $$0P:(DE-HGF)0$$aEichler, Katharina$$b1
000877604 7001_ $$0P:(DE-HGF)0$$aKölsch, Benedikt$$b2
000877604 7001_ $$0P:(DE-HGF)0$$aPischinger, Stefan$$b3
000877604 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b4$$eCorresponding author$$ufzj
000877604 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2019.05.010$$gVol. 255, p. 113207 -$$p113207 -$$tApplied energy$$v255$$x0306-2619$$y2019
000877604 909CO $$ooai:juser.fz-juelich.de:877604$$pVDB
000877604 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877604 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877604 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877604 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000877604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b4$$kFZJ
000877604 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b4$$kRWTH
000877604 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877604 9141_ $$y2020
000877604 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000877604 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-12
000877604 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000877604 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000877604 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000877604 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-12
000877604 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2018$$d2020-01-12
000877604 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000877604 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000877604 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-12
000877604 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-12
000877604 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-12
000877604 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2018$$d2020-01-12
000877604 920__ $$lyes
000877604 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000877604 980__ $$ajournal
000877604 980__ $$aVDB
000877604 980__ $$aI:(DE-Juel1)IEK-10-20170217
000877604 980__ $$aUNRESTRICTED
000877604 981__ $$aI:(DE-Juel1)ICE-1-20170217