000877608 001__ 877608
000877608 005__ 20240709081915.0
000877608 0247_ $$2doi$$a10.1016/j.apenergy.2019.04.029
000877608 0247_ $$2ISSN$$a0306-2619
000877608 0247_ $$2ISSN$$a1872-9118
000877608 0247_ $$2altmetric$$aaltmetric:60014867
000877608 0247_ $$2WOS$$aWOS:000470948200061
000877608 037__ $$aFZJ-2020-02323
000877608 082__ $$a620
000877608 1001_ $$0P:(DE-HGF)0$$aBaumgärtner, Nils$$b0
000877608 245__ $$aDesign of low-carbon utility systems: Exploiting time-dependent grid emissions for climate-friendly demand-side management
000877608 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000877608 3367_ $$2DRIVER$$aarticle
000877608 3367_ $$2DataCite$$aOutput Types/Journal article
000877608 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592829654_26501
000877608 3367_ $$2BibTeX$$aARTICLE
000877608 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877608 3367_ $$00$$2EndNote$$aJournal Article
000877608 520__ $$aEfficient energy supply is key to reduce industrial greenhouse gas emissions. In the industry, energy is often supplied by on-site utility systems with electricity grid connection. Usually, electricity from the grid is assumed to have annually averaged emission factors when greenhouse gas emissions are calculated. However, emissions from electricity production are in fact time-dependent to match continuously varying demand and supply. These time dependent emissions offer the potential to reduce emissions by temporal shifting of electricity demand in demand-side management.Here, we investigate the impact of time-dependent grid mix emissions for low-carbon utility systems. For this purpose, we present a detailed mixed-integer linear programming model for a low-carbon utility system. Subsequently, we compute time-dependent grid emission factors based on the current mix and based on the marginal technologies. These grid emission factors serve as input to determine and economic and environmental trade-off curves. We show that emissions can be reduced by up to 6% at the same costs by considering time-dependent grid mix emissions, instead of annual average grid emissions. Marginal time-dependent emission factors even allow to reduce emissions by up to 60%. Our work shows that time-dependent grid emissions factors could enable climate-friendly demand-side management leading to significant emission reductions.
000877608 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877608 588__ $$aDataset connected to CrossRef
000877608 7001_ $$0P:(DE-HGF)0$$aDelorme, Roman$$b1
000877608 7001_ $$0P:(DE-HGF)0$$aHennen, Maike$$b2
000877608 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b3$$eCorresponding author$$ufzj
000877608 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2019.04.029$$gVol. 247, p. 755 - 765$$p755 - 765$$tApplied energy$$v247$$x0306-2619$$y2019
000877608 909CO $$ooai:juser.fz-juelich.de:877608$$pVDB
000877608 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877608 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877608 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b3$$kFZJ
000877608 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b3$$kRWTH
000877608 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877608 9141_ $$y2020
000877608 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000877608 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-12
000877608 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000877608 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000877608 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000877608 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-12
000877608 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2018$$d2020-01-12
000877608 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000877608 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000877608 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-12
000877608 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-12
000877608 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-12
000877608 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2018$$d2020-01-12
000877608 920__ $$lyes
000877608 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000877608 980__ $$ajournal
000877608 980__ $$aVDB
000877608 980__ $$aI:(DE-Juel1)IEK-10-20170217
000877608 980__ $$aUNRESTRICTED
000877608 981__ $$aI:(DE-Juel1)ICE-1-20170217