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Abstract

The synthesis of energy systems is a two-stage optimization problem where design decisions have
to be implemented here-and-now (first stage), while for the operation of installed components,
we can wait-and-see (second stage). To identify a sustainable design, we need to account for
both economical and environmental criteria leading to multi-objective optimization problems.
However, multi-objective optimization leads not to one optimal design but to multiple Pareto-
efficient design options in general. Thus, the decision maker usually has to decide manually
which design should finally be implemented.

In this paper, we propose the flexible here-and-now decision (flex-hand) approach for auto-
matic identification of one single design for multi-objective optimization. The approach mini-
mizes the distance of the Pareto front based on one fixed design to the Pareto front allowing
multiple designs. Uncertainty regarding parameters of future operations can be easily included
through a robust extension of the flex-hand approach.

Results of a real-world case study show that the obtained design is highly flexible to adapt
operation to the considered objective functions. Thus, the design provides an energy system
with the ability to adapt to a changing focus in decision criteria, e. g., due to changing political
aims.
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1 Introduction

The design of sustainable energy systems needs to balance multiple objectives representing eco-
nomical, environmental, and social decision criteria. The resulting design problem is therefore
best addressed by multi-objective optimization. However, multi-objective optimization yields
not an optimal design but a Pareto front with many different designs. Hence, the decision maker
is often confronted with the question: How to select one single design?

In literature, several approaches exist to reduce the number of relevant solutions, so that
the decision maker has then to choose one of fewer options. A method to focus on the relevant
solutions a priori by excluding solutions before the optimization is proposed by Branke et al.
(2004) and Rachmawati and Srinivasan (2009). They introduce a preference-based evolutionary
approach focusing on calculating “knee” regions of the Pareto front. Hennen et al. (2017) focus
on Pareto-efficient solutions which are near-optimal with respect to an aggregated criterion that
represents the overall set of objective functions. An a posteriori approach to reduce the set of
relevant Pareto-efficient solutions is to cluster solutions, e. g., based on subtractive clustering
(Zio and Bazzo, 2011), by k-means classification (Taboada et al., 2007), or by a self-organizing
map (Li et al., 2009). Das (1999) focus on relevant Pareto-efficient solutions by evaluating
subsets of the objective functions. The approach has been further developed by Antipova et al.
(2015). But still, in all approaches which reduce the number of relevant solutions, the decision
maker has to select the finally implemented design.

For further reduction of the Pareto-efficient solutions, Taboada et al. (2007) and Abubaker
et al. (2014) propose ranking methods which are based on a prioritization of objective functions
by the decision maker. For ranking compromising solutions without explicit prioritization, the
methods LINMAP (Linear Programming Technique for Multidimensional Analysis of Prefer-
ence) (Srinivasan and Shocker, 1973), VIKOR (Duckstein and Opricovic, 1980; Opricovic and
Tzeng, 2004), and TOPSIS (technique for order preference by similarity to an ideal solution)
(Hwang and Yoon, 1981; Chen and Hwang, 1992) measure the distance from the ideal point
and, in TOPSIS, also from the nadir point. The idea is based on compromise programming,
where the solution with objective values “as close as possible” to the ideal point is chosen, or “as
far away as possible” from the worst possible point (Zelany, 1974). With the aim to determine
key players in social networks, de la Fuente et al. (2018) employ eleven methods for automatic
solution selection within the set of Pareto optimal solutions. These include, e. g., highest hyper-
cube (Beume et al., 2009), consensus (Pérez et al., 2017), shortest distance to the ideal point
(Padhye and Deb, 2011), and shortest distance to all points. A review on a posteriori decision
making has been recently proposed by Jing et al. (2019). For general multi-objective problems,
the introduced ranking methods are suitable to select one solution. However, for synthesis of
energy systems, special characteristics of design optimization are beneficial to select one design.

In particular, design optimization of energy systems is a two-stage optimization problem.
Two-stage optimization problems consist of two sets of decision variables: The here-and-now
variables representing the first stage which need to be fixed in the beginning, and the wait-and-
see variables representing the second stage which can still be adapted later (Ben-Tal et al., 2004).
In energy system optimization, the here-and-now variables correspond to the design of energy
systems while the operation is determined by the wait-and-see variables on the second stage. The
approaches for solution reduction discussed so far do not take any advantage of the two-stage
characteristics of energy systems. Thus, these approaches miss the possibility to choose a first-
stage solution which provides high adaptability on the second stage. Exploiting adaptability
might be particular important. Since future conditions are not known today, the capability
to adapt operation to changing circumstances should be targeted (Shang and Kokossis, 2005).
Political aims might change, and thus, the importance of economical, environmental, and social
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aims might change. As a result, the sustainable energy system should provide flexible operation
to enable an adaptation to a changing focus within the regarded criteria.

Two-stage characteristics are regarded in design selection by Mattson and Messac (2003).
In the proposed approach, the design options need to be discrete. For each design option, the
corresponding Pareto front is generated. Afterwards, a Pareto filter is applied simultaneously to
all generated fronts deleting all dominated solutions. Finally, design options lying inside a pre-
defined region of interest are selected. However, with increasing number of components in the
given superstructure, the design options along the Pareto front might change more frequently
within the region of interest leading to a higher number of suitable design options to select from.
A similar approach is proposed by Carvalho et al. (2012): Based on discrete design options,
the corresponding Pareto front is generated. Design options with the ability to undergo large
changes in operation enable higher resilience and are thus favored. Guo et al. (2013) introduce
a two-stage optimal planning and design method for combined cooling, heating, and power
microgrid systems. On the first stage, the system design is optimized using a generic multi-
objective optimization approach. On the second stage, the operational costs are minimized.
Wang et al. (2019) additionally regard a feedback from the second stage to the first stage
to ensure the accuracy of the planning. However, a systematic or even automatic selection of
favored design options is not proposed in either approaches, e. g., by applying distance measures
to assess the generated Pareto fronts.

All discussed approaches do either take advantage of the two-stage characteristic of energy
systems or propose a ranking of Pareto-efficient solutions. How to select one single design
exploiting the two-stage nature has not been proposed so far to the authors’ best knowledge.

In this paper, we propose the flexible here-and-now decision (flex-hand) approach to identify
one single design which represents the whole Pareto front best without depending on any addi-
tional information of the decision maker. For this purpose, we minimize the distance between
the Pareto front of the synthesis problem, i. e., the Pareto front with changing design options,
and the Pareto front induced by one fixed design. The fixed design leading to the minimal
distance is identified by the proposed approach since this design provides a high flexibility re-
garding the considered objective functions. Thus, the second stage can be well adapted to a
changing focus from one to another objective function.

Since not only future aims are uncertain but also future parameter values such as demands
or costs, we extend our proposed approach by considering uncertain input data based on scenar-
ios. Uncertainties of input data have been regarded, e. g., by Quintana et al. (2017); Tock and
Maréchal (2015), and Lemos et al. (2018), using the sensitivity against uncertainties to assess
Pareto-efficient solutions. Gabrielli et al. (2019) propose an approach in which Pareto-efficient
designs are assessed by performance indicators measuring the robustness and the cost optimal-
ity. The final selection of one design depends on the target levels which need to be provided by
the decision maker. Ide and Schöbel (2016) provide an overview of approaches for one-stage ro-
bust multi-objective problems. Robust multi-objective optimization has been applied to energy
systems by Majewski et al. (2017). Sun et al. (2018) propose a multi-objective discrete robust
optimization algorithm to identify a single solution by converting multiple objective functions
into one unified cost function. Until now, taking uncertainties into account when automatically
identifyingone single design for two-stage problems has been an open research question.

For certain and uncertain two-stage problems, our approach allows automatic selection of one
design regarding multiple decision criteria. While we introduce our approach in the context of
energy systems, the methodology is general and can be applied to any two-stage multi-objective
optimization problem.

The remaining article is structured as follows: In Section 2, we introduce the problem
class as well as the flex-hand approach and the extension for uncertain input values. In the
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following Section 3, a real-world case study of an industrial park is introduced and the results
are evaluated. We give a summary and conclusions in Section 4.

2 The flex-hand approach for design selection in multi-objective
optimization

The selection of energy system designs considering multiple criteria is complex, since the Pareto
front can contain a diverse set of design options. To help the decision maker implementing one
fixed design which allows flexible operation, we propose the flex-hand approach. The approach
automatically identifies the best possible design looking even beyond the set of Pareto solutions.
Before presenting the flex-hand approach in Section 2.2 and the robust extension in Section 2.3,
we first introduce some basic concepts and notation in Section 2.1.

2.1 Two-stage multi-objective optimization

Two-stage optimization depends on two stages of decision making. Thus, there are two sets of
variables: Xf , the set of feasible solutions for first-stage variables xf , and Xs(x

f ), the set of
feasible solutions for the second-stage variables xs which depends on the chosen first-stage so-
lution. First-stage variables xf are also called here-and-now variables since once these variables
are fixed, they cannot be adapted later. Second-stage variables xs are also called wait-and-see
variables since they can still be adapted later. As an example, first-stage variables xf may
model an investment in heating equipment (a design decision), while second-stage variables xs

models the way the equipment is run (an operational decision).
In this paper, we use multiple objectives to design sustainable energy systems. As objectives

might be conflicting, we are interested in a set of trade-off solutions. A solution is called Pareto
efficient if there is no other solution that is at least as good in each objective and strictly
better in at least one objective (Ehrgott, 2005). The two-stage multi-objective problem with K
objectives is given by:

min
(
f1(x

f , xs), . . . , fK(xf , xs)
)

s.t. xf ∈ Xf

xs ∈ Xs(x
f ) .

We assume the set of Pareto-efficient solutions to be discrete and denote them as (χf
1 , χ

s
1) , . . . ,

(χf
N , χ

s
N ). The set of Pareto-efficient solutions in the objective space, called Pareto front, is

denoted as P∗ = (ρ1, . . . , ρN ) with ρi = (ρi1, . . . , ρ
i
K) =

(
f1(χ

f
i , χ

s
i ), . . . , fK(χf

i , χ
s
i )
)
∈ RK .

In this paper, we assume that the Pareto front is discrete; for continuous Pareto fronts, our
approach is still applicable to a discrete representative set of the efficient solutions.

We call the problem ideal when both first-stage variables xf and second-stage variables
xs can be chosen separately for each efficient point. The corresponding set of Pareto-efficient
solutions in the objective space P∗ is called ideal Pareto front. The word ideal emphasizes that
the ideal Pareto front is always better than the Pareto front with fixed first-stage variables.
In energy system optimization, the ideal Pareto front would imply changing design options
(e. g. heating equipment) along the Pareto front and thus, cannot be reached by energy systems
implemented in the real world. In our flex-hand approach, we use the ideal Pareto front as
benchmark for evaluating Pareto fronts with fixed design options, i. e., with fixed first-stage
variables.
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2.2 The flexible here-and-now decision approach

The idea of the flex-hand approach is to find one fixed design which represents the ideal Pareto
front of the synthesis problem best. In optimization of energy systems, the operation of an
installed system can be adapted but changing the installed system design is not possible in
the short term. The design with the highest flexibility in operation regarding the objectives is
chosen by the flex-hand approach. To determine the highest flexibility, the flex-hand approach
minimizes the distance between the ideal Pareto front and the Pareto front based on one fixed
design but flexible operation.

The flex-hand approach is not limited to energy system optimization but can be applied to
any two-stage multi-objective problem where the first-stage variables xf need to be fixed right
now and the second-stage variables xs can be determined later.

For one fixed design, i. e., for a given first-stage solution xf , we calculate Pareto-efficient
solutions:

min
(
f1(x

f , xs), . . . , fK(xf , xs)
)

s.t. xs ∈ Xs(x
f ) .

We obtain a Pareto front P(xf ) =
(
p1(xf ), . . . , pN(xf )(xf )

)
depending on the first-stage solution

xf with N(xf ) points which we call fixed first-stage Pareto front.
Now the question arises: How to choose first-stage variables xf such that we get the “best”

design? To determine the quality of a first-stage solution xf , we compare the Pareto front
P(xf ) with fixed first-stage to the ideal Pareto front P∗. For the comparison of two sets of
multi-objective solutions, a variety of distance measures have been developed (for a review see
Zitzler et al. (2003)). Here, we choose a comparison metric based on an additive binary ε-
indicator. As discussed by Zitzler et al. (2003), there is no single best way to compare Pareto
fronts, but the ε-indicator is proposed as a good overall method. Employing other metrics would
be possible in our setting.

For two sets P1 = (p1, . . . , pS) and P2 = (q1, . . . , qT ) in the K-dimensional objective space,
the binary ε-indicator is obtained by

I(P1,P2) = min
{
ε : ∀l ∈ [T ] ∃j ∈ [S] s.t. pji − q

l
i ≤ ε ∀i ∈ [K]

}
where we use the notation [Z] = {1, . . . , Z} for sets with any integer Z ∈ N. For our approach,

the measure I
(
P(xf ),P∗

)
indicates the distance between a fixed first-stage Pareto front and

the ideal Pareto front.
The comparison metric can be interpreted as follows: Recall that each point of the ideal

Pareto front P∗ may involve changing first-stage solutions xf along the front. In contrast, the
fixed first-stage Pareto front P(xf ) is based on one single first-stage solution xf where only the
second-stage decision can be adapted. Figure 1 shows the comparison of the ideal Pareto front
to an arbitrary fixed first-stage Pareto front.

For each point on the ideal Pareto front, a point on the fixed first-stage Pareto front can
be determined such that the difference in each objective function is smaller than a value of ε.
By minimizing ε, the distance between the Pareto fronts is minimized. In this way, for energy
systems, we minimize the distance between the ideal Pareto front allowing changing designs as
well as operation and the Pareto front based on one fixed design where only the operation can
be adapted.

5



f1
(
xf , xs

)

f
2

( x
f
,x

s
)

ideal Pareto front

fixed first-stage Pareto front

≤ ε

≤ ε

= ε

Figure 1: Comparison of ideal Pareto front to an arbitrary fixed first-stage Pareto front, to
assess the the quality of the fixed first-stage solutions xf ; dark green dots: ideal Pareto front
used as benchmark; orange circles: fixed first-stage Pareto front with distance ε to the ideal
Pareto front; lines are included to guide reader’s eyes

Since we consider the difference regarding each objective function separately, we normalize
the objective functions based on the value range in P∗ to circumvent misleading effects by
different scales of objective values. To this end, we use the normalized objectives f i with

f i(x
f , xs) =

fi(x
f , xs)−minj∈[N ] fi(χ

f
j , χ

s
j)

maxj∈[N ] fi(χ
f
j , χ

s
j)−minj∈[N ] fi(χ

f
j , χ

s
j)
.

In the following, we write P(xf ), P∗ to denote normalized Pareto fronts.
Searching for an optimal first-stage variable xf , i. e., an optimal design, we now minimize

the distance between the Pareto fronts:

min
{
I
(
P(xf ),P∗

)
: xf ∈ Xf

}
.

The problem formulation can also be written as:

min ε

s.t. f i(x
f , xsj)− f i(χ

f
j , χ

s
j) ≤ ε ∀i ∈ [K], j ∈ [N ]

xf ∈ Xf

xsj ∈ Xs(x
f ) ∀j ∈ [N ] .

Here, for each point on the ideal Pareto front P∗, we consider one point on the fixed first-stage
Pareto front P(xf ). Thus, for the purpose of finding an optimal xf , we assume without loss
of generality that the number of points on the fixed first-stage Pareto front is identical to the
number of points on the ideal Pareto front and thus N(xf ) = N holds.

The flex-hand approach yields an optimal first-stage solution (xf )∗ which represents the
ideal Pareto front best regarding the chosen measure. We call the optimal first-stage solution
(xf )∗ the flex-hand solution. In general, the flex-hand solution chosen by our approach is not
necessarily part of the solutions of the calculated ideal Pareto front P∗. Thus, approaches based
on sorting or solution-reduction would not identify the flex-hand solution in general.

Having found a flex-hand solution, we calculate the corresponding Pareto-efficient second-
stage solution xs in a separate post-processing optimization step. The resulting Pareto front is
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called the flex-hand Pareto front. The number of points on the flex-hand Pareto front might dif-
fer from the original number of points N . For energy systems, this post-processing optimization
corresponds to an operational multi-objective optimization based on a fixed design.

There is also an alternative interpretation of our proposed flex-hand approach: To solve
multi-objective optimization problems, weighted sums as

∑
i∈[K] λif i(x

f , xs) could be considered
(see Ehrgott (2005)). Since we do not know the correct preference weighting, the weighting
factors λi are uncertain. Here, each point on the ideal Pareto front represents the optimal
solutions if we knew the preference weighting in advance. The aim is now to find a first-stage
solution xf which yields a high solution quality for a wide range of weights. The ε value of
our flex-hand approach can thus be considered as regret (see Aissi et al. (2009) for a survey
of regret optimization). However, employing weighted sums, only solutions on the convex hull
of the Pareto front can be found. In contrast, our approach also considers points not on the
convex hull of Pareto solutions.

2.3 The robust flex-hand approach

In optimization of energy systems, decisions are based on input parameters which are inherently
uncertain. Thus, we extend the proposed flex-hand approach for problems comprising uncer-
tain parameters in the objective functions and constraints, and introduce the robust flex-hand
approach. As the flex-hand approach, the robust flex-hand approach can also be applied to
any other two-stage multi-objective problem where the first-stage needs to be determined in
advance.

The robust flex-hand approach automatically selects first-stage solutions taking uncertainties
into account. For this purpose, we assume multiple scenarios which are contained in the discrete
uncertainty set U . In each scenario, we compare the ideal Pareto front for the current scenario
to a fixed first-stage Pareto front which is based on one fixed set of first-stage variables for all
scenarios simultaneously. We then minimize the distance between the Pareto fronts in the worst
case and thereby find the robust optimal first-stage solution.

For this purpose, we calculate the ideal Pareto front P∗(ξ) in each scenario ξ ∈ U separately.
Here, the number of elements in P∗(ξ) is denoted by N(ξ). The objectives are parametrized also

through scenarios ξ ∈ U , i. e., we use fi

(
xf , xs(ξ), ξ

)
. Again, we normalize objectives which we

denote by f i

(
xf , xs(ξ), ξ

)
, for each scenario ξ. To minimize the worst-case distance between

the ideal Pareto front and the fixed first-stage Pareto front, we minimize the maximum value
of the ε-indicator over all ξ ∈ U :

min ε

s.t. f i

(
xf , xsj(ξ), ξ

)
− f i

(
χf
j (ξ), χs

j(ξ), ξ
)
≤ ε ∀ξ ∈ U , i ∈ [K], j ∈ [N(ξ)]

xf ∈ Xf

xsj(ξ) ∈ Xs(x
f , ξ) ∀ξ ∈ U , j ∈ [N(ξ)] .

Here, Xs(x
f , ξ) is the set of feasible second-stage variables given first-stage variables xf and

scenario ξ. The optimal first stage solution (xf )∗ is the identified robust flex-hand solution.
An example is given in Figure 2. The ideal Pareto front is calculated for each of the three

scenarios (ξ1, ξ2, ξ3) separately. The robust fixed first-stage Pareto fronts are based on one fixed
set of first-stage variables for all scenarios; however, the corresponding robust fixed first-stage
Pareto fronts are calculated for each scenario separately by adapting the second-stage variables
xs.
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f1
(
xf , xs, ξ

)

f
2

( x
f
,x

s
,ξ
)

ideal Pareto front in ξ1
ideal Pareto front in ξ2
ideal Pareto front in ξ3
robust fixed first-stage Pareto front in ξ1
robust fixed first-stage Pareto front in ξ2
robust fixed first-stage Pareto front in ξ3≤ ε

≤ ε

≤ ε

= ε

Figure 2: Idea of the robust flex-hand approach: For each scenario separately, the ideal Pareto
front (dark green filled marks) and a robust fixed first-stage Pareto front (orange unfilled marks)
are compared; triangles, circles, and squares represent scenario ξ1, ξ2, and ξ3, respectively;
the distance ε is calculated regarding all scenarios; here, Pareto fronts are presented without
normalization; lines are included to guide reader’s eyes

3 Case study

In this section, we apply the flex-hand approach to design the energy system of a real-world
industrial park. The case study is introduced in Section 3.1. The results of the flex-hand
approach are presented and discussed in detail in Section 3.2 and in Section 3.3 for the robust
flex-hand approach.

To compute Pareto fronts, we use the adaptive normal boundary intersection method (Das
and Dennis, 1998). For calculation, we employ 4 threads of a computer with 3.24 GHz and
64 GB RAM. The problem is formulated in GAMS 24.7.3 (McCarl and Rosenthal, 2016) and
solved by the solver CPLEX 12.6.3.0 (IBM Corporation, 2015) to machine accuracy.

3.1 The real-world example

The real-world example is based on our previous work (Voll et al., 2013) on the optimization
of a distributed energy supply system. We consider an industrial site with one power grid, one
heating grid and two separated cooling grids (Site A and Site B). The thermal demands and
their uncertainties are given in Fig. 3.
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Figure 3: Thermal demands of the industrial site and their uncertainties represented by error
bars; adopted from Majewski et al. (2017)

The design of the energy system corresponds to sizing and installing any number of com-
ponents from the following types of energy conversion components: boilers B, combined heat
and power engines CHP , absorption chillers AC, and compression chillers CC. Natural gas
can be used at costs of pgas = 6 ct/kWh with ±40 % of uncertainty. Furthermore, we assume
a connection to the electricity grid. Electricity can be purchased for pel,buy = 16 ct/kWh and
sold for pel,sell = 10 ct/kWh. For purchasing and selling, an uncertainty of ±46 % is considered.
All possibly uncertain input parameters depend on the scenario ξ and are additionally marked
using a tilde. The values for uncertainty are deduced from Majewski et al. (2017). To design a
sustainable energy system, we employ an economical and an environmental objective function:
the total annualized costs TAC and the global warming impact GWI . In principle, the method
could also consider social criteria (Mota et al., 2015).

The total annualized costs TAC are defined by:

TAC
(
U̇ , U̇ el,buy, V̇ el,sell, INVEST k; ξ

)
(1)

=
∑
t∈[T ]

[
∆τt

(
p̃gas(ξ) ·

∑
k∈B∪CHP

U̇kt(ξ) + p̃el,buy(ξ) · U̇ el,buy
t (ξ)

− p̃el,sell(ξ) · V̇ el,sell
t (ξ)

)]
+
∑
k∈K

(
1

PVF
+ pmk

)
· INVEST k

Here, k represents a component in the set of all components K = B ∪ CHP ∪ AC ∪ CC which
might be installed. For each time step t ∈ [T ], ∆τt represents its length. The corresponding
input energy flows of natural gas for boilers B and combined heat and power engines CHP are
denoted by U̇kt. The input and the output energy flow of electricity are declared by U̇ el,buy

t

and V̇ el,sell
t , respectively. For each component k, pmk represents the annual maintenance costs

as share of the investment costs INVEST k. For annualizing the investment costs INVEST k, we
use the present value factor (Broverman, 2010)

PVF =
(i+ 1)h − 1

(i+ 1)h · i

with an interest rate i = 8 % and a time horizon h = 4 a.
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The global warming impact is given by:

GWI
(
U̇ , U̇ el,buy, V̇ el,sell; ξ

)
(2)

=
∑
t∈[T ]

∆τt

[ ∑
k∈B∪CHP

U̇kt(ξ) · GWI gas +
(
U̇ el,buy
t (ξ)− V̇ el,sell

t (ξ)
)

· G̃WI
el

(ξ)

]
.

We employ GWI gas = 244 gCO2-eq./kWh for the specific global warming impact of gas which is
not subject to remarkable variation. For the specific global warming impact GWI el of electricity
purchased from the grid, we employ a value of 561 gCO2-eq./kWh. Since the future electricity
mix might change significantly, we assume the specific global warming impact GWI el to be
uncertain lying within 430 gCO2-eq./kWh and 610 gCO2-eq./kWh. When selling electricity to the
grid, a credit for global warming impact is given, following the idea of the avoided burden
(Baumann and Tillman, 2004). Here, the global warming impact GWI depends only implicitly
on the first-stage variables xf due to the constraints. A direct influence would be given if
the global warming impact induced by the manufacturing of the components was taken into
account. However, since the global warming impact of the operation has usually a significantly
higher impact (Guillén-Gosálbez, 2011), we neglect this dependency. The complete flex-hand
optimization model is presented in Appendix A.

For the design optimization, we assume a “green field” without existing energy components.
However, the flex-hand approach could also be applied to retrofit an energy system.

3.2 The flex-hand design

We now employ the flex-hand approach to design the sustainable energy system in order to
obtain the best solution for the first-stage variables xf which we call the flex-hand design. For
this purpose, we first calculate the ideal Pareto front as a benchmark. The ideal Pareto front
is obtained by allowing a different design for each point on the front. The largest optimization
problem for calculating a point on the ideal Pareto front consists of 1950 equations, 576 variables,
and 310 binary variables after presolve. In total, the whole ideal Pareto front is calculated in
317 s. The flex-hand problem has 5099 equations, 2023 variables, and 751 binary variables after
presolve. Here, computing the flex-hand Pareto front takes 152 s. Both the ideal Pareto front
and the flex-hand Pareto front are shown in Fig. 4.
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(orange circles) with minimal distance ε∗ to the ideal Pareto front; small dark green dots: fixed
first-stage Pareto front of ideal designs, i. e., Pareto-efficient operation for each design of the
ideal Pareto front; here, Pareto fronts are presented without normalization; lines are included
to guide reader’s eyes

The flex-hand Pareto front of the selected design is“streched out”. Thus, the flex-hand design
allows for flexible operation providing a high ability to adapt to changing future objectives.
The flex-hand design can be operated such that the total annualized costs TAC are very low at
7.8 Mio.e/a or the global warming impact GWI is very low with 22.6 ktCO2-eq./a.

In this case study, the minimal distance between the ideal and the flex-hand Pareto front
is limited, e. g., by the anchor points with minimal total annualized costs limits (Fig. 4). The
corresponding scaled value for the minimized distance is ε∗ = 0.128. For unscaled values, the
minimal total annualized costs for the ideal design are TAC ideal = 7.51 Mio.e/a and for the flex-
hand design TAC flex-hand = 7.78 Mio.e/a, respectively. Hence, the maximal deviation for total
annualized costs is 0.27 Mio.e/a which corresponds to a maximal loss of only 3.6 % compared to
the ideal design with minimized total annualized costs. Regarding the minimal global warming
impact, the maximal deviation is only 2.17 %. Thus, the flexibility of the flex-hand design is
very high regarding both objective functions.

When having a closer look at the identified design, we cannot identify a single reason for its
higher ability to adapt operation (Fig. 5).
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Figure 5: In dark green: designs of ideal Pareto front; in orange: flex-hand design of the flex-
hand Pareto front; from left to right, the designs are ordered by decreasing minimal global
warming impact; B boiler, CHP combined heat and power engine, CCA and CCB compression
chillers, and ACA and ACB absorption chillers installed on Site A and Site B, respectively

In general, solutions with lower global warming impact prefer installing higher capacity of
combined heat and power engines, since the specific global warming impact of the electricity mix
of the grid is higher than the impact of the combined heat and power engines in combination
with absorption chillers. The flex-hand design does not show remarkable differences compared to
the other ideal designs but provides an excellent compromise. Without the proposed approach,
this highly adaptable design would most likely not have been identified by the decision maker.

3.3 The robust flex-hand design

We now apply the robust flex-hand approach to the proposed case study taking uncertainties
into account. The uncertainties are introduced in Section 3.1. Here, we consider three scenarios
ξ1, ξ2, and ξ3. Scenario ξ2 corresponds to values of the problem without uncertainties discussed
in Section 3.2. In scenario ξ1, we assume all uncertain values to take their smallest values within
the uncertainty range and in scenario ξ3 their largest values, respectively. However, any other
scenario could be chosen.
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Figure 6: Triangles, circles, and squares represent scenario ξ1, ξ2, and ξ3, respectively; dark green
filled marks: ideal Pareto front generated for each scenario separately, orange unfilled marks:
robust flex-hand Pareto front in each scenario; small light blue marks: flex-hand Pareto front
for separately considered scenarios; here, Pareto fronts are presented without normalization

To evaluate the robust flex-hand design, we compare the robust flex-hand Pareto fronts in
all three scenarios to the flex-hand Pareto fronts generated for each scenario separately. Fig. 6
shows that the flex-hand Pareto fronts generated for each scenario separately do not coincide
with the robust flex-hand Pareto fronts. In scenario ξ3, the robust flex-hand design leads to
smaller total annualized costs than the flex-hand design computed for scenario ξ3 but to a
higher global warming impact. In total, the robust flex-hand Pareto front is less “streched
out” than for the nominal case (Section 3.2) leading to an optimal distance ε∗ of 0.625. The
reduced adaptability to the ideal Pareto fronts is due to the fact that the robust flex-hand
Pareto fronts need to approximate three ideal Pareto fronts simultaneously, instead of just one
Pareto front. Thus, a good performance of a flex-hand design in one scenario might lead to a
poor performance in another scenario if uncertainties are not regarded during design (Fig. 7).
In contrast, the robust flex-hand design is a compromise solution performing well in all three
scenarios simultaneously.

In Fig. 7, we take a closer look on the computed Pareto fronts in scenario ξ1. Here, the
robust flex-hand design (4) clearly performs better than the flex-hand design identified for
scenario ξ2 (◦) and the flex-hand design identified for scenario ξ3 (���). In scenario ξ1, only the
flex-hand Pareto front of scenario ξ1 (NNN) approximates the ideal Pareto front (NNN) better than
the robust flex-hand Pareto front (4). However, the flex-hand design of scenario ξ1 is infeasible
for scenario ξ2 and ξ3. In contrast, the robust flex-hand design is feasible and performs well for
all scenarios.

13



3.6 3.8 4 4.2 4.4

17.4

17.6

17.8

18

TAC in Mio.e/a

G
W

I
in

k
t C

O
2
-e
q
./

a

ideal Pareto front of ξ1
robust flex-hand Pareto front in ξ1
flex-hand Pareto front of ξ1
flex-hand Pareto front of ξ2 in ξ1
flex-hand Pareto front of ξ3 in ξ1

Figure 7: All Pareto fronts for scenario ξ1; dark green filled triangles (NNN): ideal Pareto front of
scenario ξ1; orange unfilled triangles (4): robust flex-hand Pareto front in scenario ξ1; small
light blue triangles (NNN): flex-hand Pareto front of scenario ξ1; small light blue unfilled circles and
squares (◦ and ���): flex-hand Pareto front in scenario ξ1 based on flex-hand design computed
for scenario ξ2 and ξ3, respectively; here, Pareto fronts are presented without normalization

Having a closer look at the design (Fig. 8), we observe that the total capacity of the three
flex-hand designs increases from scenario ξ1 to ξ3. This is due to the fact that values of uncertain
input parameter increase as well. With increasing demands and also increasing specific global
warming impact of the electricity grid, larger combined heat and power engines and boilers are
installed combined with a higher capacity of absorption chillers and smaller compression chillers.
The robust flex-hand design does not differ remarkably from the three flex-hand designs. Thus,
the robust flex-hand approach is necessary to identify the excellent compromise given by the
robust flex-hand design.

Figure 8: In light blue: flex-hand designs generated for each scenario separately (from left to
right: scenario ξ1, ξ2, and ξ3); in orange: robust flex-hand design; B boiler, CHP combined heat
and power engine, CCA and CCB compression chillers, and ACA and ACB absorption chillers
installed on Site A and Site B, respectively
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4 Conclusions

The sustainable optimization of energy systems is inherently a two-stage optimization prob-
lem with multiple decision criteria. Applying multi-objective optimization usually generates
different designs for each point on the Pareto front. We propose the flex-hand approach for
identifying a single design which performs well regarding all decision criteria. The idea of the
flex-hand approach is to approximate the Pareto front with changing design options (ideal Pareto
front) by a Pareto front with one fixed design for the whole front. The design leading to the
minimal distance between both Pareto fronts is the design which is identified by the flex-hand
approach. The identified design (flex-hand design) is able to adapt to all regarded criteria well,
and thus, provides high flexibility to reach future aims for which focus might change between
the considered objective functions.

Our real-world case study demonstrates the resulting high adaptability with respect to the
considered criteria. For designing the sustainable energy system, we choose total annualized
costs and the global warming impact as economical and environmental criteria, respectively.
The calculated Pareto front of the flex-hand design is ”stretched out” in comparison to the
Pareto fronts obtained by operational optimization of designs lying on the ideal Pareto front.
The objective function values of flex-hand design differ by less than 3.6 % from the ideal values
which highlights the excellent quality of the identified flex-hand design. The flex-hand design
does not show remarkable differences compared to the designs lying on the ideal Pareto front.
Thus, without the flex-hand approach, the decision maker would possibly not have chosen
the identified design. This effect becomes even more pronounced when considering multiple
scenarios simultaneously to account for uncertainty, in which case our approach is able to find
a robust solution.

To conclude, the flex-hand approach takes advantage of the two-stage nature of energy
systems to automatically select one single design which provides a high flexibility to adapt
operation to all considered criteria.
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A Model Formulation

In the following, we provide the problem formulation of the robust flex-hand optimization for
the DESS considered in our case study (Section 3). In the case study, we consider the total
annualized costs TAC and the global warming impact GWI as objective functions. Uncertainties
are regarded for tariffs for purchasing gas p̃gas(ξ) and electricity p̃el,buy(ξ) as well as for selling
electricity p̃el,sell(ξ). Furthermore, the specific global warming impact of the electricity mix of

the grid G̃WI
el

(ξ) is assumed to be uncertain as well. In the constraints, the energy balances

are affected by uncertain energy demands ˜̇Eheat

(ξ), ˜̇Ecool

(ξ), and ˜̇Eel

(ξ).
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min ε

s.t. TAC
(
U̇ , U̇ el,buy, V̇ el,sell, γ, V̇ N ; ξ, j

)
− TAC

∗
(ξ, j) ≤ ε ∀ξ ∈ U , j ∈ [N(ξ)]

GWI
(
U̇ , U̇ el,buy, V̇ el,sell; ξ, j

)
−GWI

∗
(ξ, j) ≤ ε ∀ξ ∈ U , j ∈ [N(ξ)]∑

k∈B∪CHP

V̇kt(ξ, j)−
∑
k∈AC

U̇kt(ξ, j) = ˜̇Eheat

t (ξ) ∀t ∈ [T ], ξ ∈ U , j ∈ [N(ξ)]

∑
k∈AC∪CC

V̇kt(ξ, j) = ˜̇Ecool

t (ξ) ∀t ∈ [T ], ξ ∈ U , j ∈ [N(ξ)]∑
k∈CHP

V̇ el
kt (ξ, j)−

∑
k∈CC

U̇kt(ξ, j)

+ U̇ el,buy
t (ξ, j)− V̇ el,sell

t (ξ, j) = ˜̇Eel

t (ξ) ∀t ∈ [T ], ξ ∈ U , j ∈ [N(ξ)]∑
h∈[H]

γkh ≤ 1 ∀k ∈ K

γkh · V̇ N,lb
kh ≤ V̇ N

kh ≤ γkh · V̇ N,lb
kh+1 ∀ k ∈ K,∀h ∈ [H]

ρmin ·
∑
h∈[H]

V̇ N
kh ≤ V̇kt(ξ, j) ≤

∑
h∈[H]

V̇ N
kh ∀k ∈ K, t ∈ [T ], ξ ∈ U , j ∈ [N(ξ)]

V̇kt(ξ, j) = ηk · U̇kt(ξ, j) ∀k ∈ K, t ∈ [T ], ξ ∈ U , j ∈ [N(ξ)]

V̇ el
kt (ξ, j) = ηtotk · U̇kt(ξ, j)− V̇kt(ξ, j) ∀k ∈ CHP , t ∈ [T ], ξ ∈ U , j ∈ [N(ξ)]

ε ∈ R+

U̇ el,buy(ξ, j), V̇ el,sell(ξ, j), V̇ el(ξ, j), U̇(ξ, j), V̇ (ξ, j) ∈ R|K|×T+ ∀ξ ∈ U , j ∈ [N(ξ)]

γ ∈ {0, 1}|K|×H , V̇ N ∈ R|K|×H+

The total annualized costs TAC and the global warming impact GWI are defined by

TAC
(
U̇ , U̇ el,buy, V̇ el,sell, γ, V̇ N ; ξ, j

)
=
∑
t∈[T ]

[
∆τt

(
p̃gas(ξ) ·

∑
k∈B∪CHP

U̇kt(ξ, j) + p̃el,buy(ξ) · U̇ el,buy
t (ξ, j)

− p̃el,sell(ξ) · V̇ el,sell
t (ξ, j)

)]
+
∑
k∈K

(
1

PVF
+ pmk

)
·
∑
h∈[H]

[
γkh ·κkh +mkh ·

(
V̇ N
kh − γkhV̇

N,lb
kh

)]
︸ ︷︷ ︸

=:INVESTk

GWI
(
U̇ , U̇ el,buy, V̇ el,sell; ξ, j

)
=
∑
t∈[T ]

∆τt

[ ∑
k∈B∪CHP

U̇kt(ξ, j) · GWI gas +
(
U̇ el,buy
t (ξ, j)− V̇ el,sell

t (ξ, j)
)

· G̃WI
el

(ξ)

]
.

Bars above the total annualized costs TAC and the global warming impact GWI in the opti-
mization problem denote the normalization of the objective values. Objective values on the nor-

malized ideal Pareto fronts are denoted by
(

TAC
∗
(ξ, j),GWI

∗
(ξ, j)

)
for each point j ∈ [N(ξ)]

and each scenario ξ in the uncertainty set U .
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The duration of a time step t ∈ [T ] is given by ∆τt. Maintenance costs are determined by
the share pmk of the investment costs INVEST k. The investment costs INVEST k are annual-
ized by the present value factor PVF . GWI gas represent the specific global warming impact
of purchased gas. Purchased and sold electricity is denoted by U̇ el,buy

t and V̇ el,sell
t , respectively.

U̇kt and V̇kt specifies input and output energy flows in time step t of component k ∈ K. Com-
ponents include boilers B, combined heat and power engines CHP , absorption chillers AC, and
compression chillers CC. Input and output energy flows are coupled by the thermal efficiency
ηk. For combined heat and power engines, the total efficiency ηtotk is given by the sum of the
thermal and the electrical efficiency ηtotk = ηk + ηelk . The minimal part-load of a component k is
defined by the fraction ρmin of the installed nominal capacity.

The investment costs INVEST k of a newly installed component k are linearized by piecewise

linearization with
∑

h∈[H]

[
γkh ·κkh +mkh ·

(
V̇ N
kh − γkhV̇

N,lb
kh

)]
(see Fig. 9). mkh is the gradient

for each line segment h ∈ [H] and is defined by

mkh :=
κkh+1 − κkh
V̇ N,lb
kh+1 − V̇

N,lb
kh

∀ k ∈ K, h ∈ [H] .

Here, parameters V̇ N,lb
kh+1 and V̇ N,lb

kh represent the nominal capacities of the lower and upper
supporting point of line segment h and parameters κkh and κkh+1 the corresponding specific
investment costs. Binary variables γkh determine if line segment h is active (γkh = 1). Since
the sum

∑
h∈[H] γkh is equal to 1, only one line segment can be active at the time. Thus, only

one value for the nominal capacity V̇ N
kh of all line segments is unequal to 0; hence, the nominal

capacity V̇ N
k of an installed component k is given by the sum

∑
h∈[H] V̇

N
kh .

V̇ N
k

INVESTk

V̇ N
k

V̇ N,lb
kh−1

κkh−1

V̇ N,lb
kh

κkh

V̇ N,lb
kh+1

κkh+1

V̇ N
kh

h− 1

h

mkh−1

mkh

Figure 9: Piecewise linearization of the investment costs INVEST k of a newly installed compo-
nent k is presented. Here, h is the active line segment; thus, γkh is equal to 1.
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