000877612 001__ 877612
000877612 005__ 20240712112905.0
000877612 0247_ $$2doi$$a10.1021/acssuschemeng.9b01603
000877612 0247_ $$2altmetric$$aaltmetric:63016981
000877612 0247_ $$2WOS$$aWOS:000475838100037
000877612 037__ $$aFZJ-2020-02327
000877612 082__ $$a540
000877612 1001_ $$0P:(DE-HGF)0$$aJens, Christian M.$$b0
000877612 245__ $$aTo Integrate or Not to Integrate—Techno-Economic and Life Cycle Assessment of CO 2 Capture and Conversion to Methyl Formate Using Methanol
000877612 260__ $$aWashington, DC$$bACS Publ.$$c2019
000877612 3367_ $$2DRIVER$$aarticle
000877612 3367_ $$2DataCite$$aOutput Types/Journal article
000877612 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592911905_9009
000877612 3367_ $$2BibTeX$$aARTICLE
000877612 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877612 3367_ $$00$$2EndNote$$aJournal Article
000877612 520__ $$aUtilizing CO2 to produce value-added chemicals can save environmental and economic impacts. However, these savings are reduced by the cost of CO2 supply when CO2 has to be captured from dilute sources. To reduce the cost of CO2 supply, the combination of CO2 capture and utilization has been suggested in a single integrated CO2 capture and utilization (ICCU) process. Although integration is intuitively appealing, a rigorous assessment of the savings by integration is missing. In this work, we evaluate if integration indeed increases savings, by comparing a utilization process without integration to a novel ICCU process. In the novel ICCU process, methanol absorbs CO2 from raw natural gas, before the mixture of CO2 and methanol is hydrogenated to methyl formate. We show that the novel ICCU process saves up to 46% of the electricity demand, which results in savings of up to 8 and 7% in the cost and the greenhouse gas emissions of the utilities, respectively. However, these savings are only enabled when raw natural gas with 30 mol % CO2 is employed; with lower CO2 concentrations, integration can even increase the cost and emissions of CCU. From the obtained results, we derive an indicator to assess the savings potential of ICCU processes. Finally, life cycle assessment reveals that CO2-based methyl formate has the potential to reduce both the global warming impact and the depletion of fossil resources compared to methyl formate produced from fossil sources.
000877612 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877612 588__ $$aDataset connected to CrossRef
000877612 7001_ $$0P:(DE-HGF)0$$aMüller, Leonard$$b1
000877612 7001_ $$0P:(DE-HGF)0$$aLeonhard, Kai$$b2
000877612 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b3$$eCorresponding author$$ufzj
000877612 773__ $$0PERI:(DE-600)2695697-4$$a10.1021/acssuschemeng.9b01603$$gp. acssuschemeng.9b01603$$n14$$p12270–12280$$tACS sustainable chemistry & engineering$$v7$$x2168-0485$$y2019
000877612 8564_ $$uhttps://juser.fz-juelich.de/record/877612/files/acssuschemeng.9b01603.pdf$$yRestricted
000877612 8564_ $$uhttps://juser.fz-juelich.de/record/877612/files/acssuschemeng.9b01603.pdf?subformat=pdfa$$xpdfa$$yRestricted
000877612 909CO $$ooai:juser.fz-juelich.de:877612$$pVDB
000877612 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877612 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877612 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b3$$kFZJ
000877612 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b3$$kRWTH
000877612 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877612 9141_ $$y2020
000877612 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS SUSTAIN CHEM ENG : 2018$$d2020-01-10
000877612 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-10
000877612 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-10
000877612 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-10
000877612 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-10
000877612 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-10
000877612 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-10
000877612 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-10
000877612 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-10
000877612 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-10
000877612 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS SUSTAIN CHEM ENG : 2018$$d2020-01-10
000877612 920__ $$lyes
000877612 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000877612 980__ $$ajournal
000877612 980__ $$aVDB
000877612 980__ $$aI:(DE-Juel1)IEK-10-20170217
000877612 980__ $$aUNRESTRICTED
000877612 981__ $$aI:(DE-Juel1)ICE-1-20170217