000877617 001__ 877617
000877617 005__ 20240712112906.0
000877617 0247_ $$2doi$$a10.1073/pnas.1821029116
000877617 0247_ $$2ISSN$$a0027-8424
000877617 0247_ $$2ISSN$$a1091-6490
000877617 0247_ $$2altmetric$$aaltmetric:60407371
000877617 0247_ $$2pmid$$apmid:31085651
000877617 0247_ $$2WOS$$aWOS:000470136000023
000877617 037__ $$aFZJ-2020-02332
000877617 082__ $$a500
000877617 1001_ $$0P:(DE-HGF)0$$aKätelhön, Arne$$b0
000877617 245__ $$aClimate change mitigation potential of carbon capture and utilization in the chemical industry
000877617 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2019
000877617 3367_ $$2DRIVER$$aarticle
000877617 3367_ $$2DataCite$$aOutput Types/Journal article
000877617 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592912225_9009
000877617 3367_ $$2BibTeX$$aARTICLE
000877617 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877617 3367_ $$00$$2EndNote$$aJournal Article
000877617 520__ $$aChemical production is set to become the single largest driver of global oil consumption by 2030. To reduce oil consumption and resulting greenhouse gas (GHG) emissions, carbon dioxide can be captured from stacks or air and utilized as alternative carbon source for chemicals. Here, we show that carbon capture and utilization (CCU) has the technical potential to decouple chemical production from fossil resources, reducing annual GHG emissions by up to 3.5 Gt CO2-eq in 2030. Exploiting this potential, however, requires more than 18.1 PWh of low-carbon electricity, corresponding to 55% of the projected global electricity production in 2030. Most large-scale CCU technologies are found to be less efficient in reducing GHG emissions per unit low-carbon electricity when benchmarked to power-to-X efficiencies reported for other large-scale applications including electro-mobility (e-mobility) and heat pumps. Once and where these other demands are satisfied, CCU in the chemical industry could efficiently contribute to climate change mitigation.
000877617 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877617 588__ $$aDataset connected to CrossRef
000877617 7001_ $$0P:(DE-HGF)0$$aMeys, Raoul$$b1
000877617 7001_ $$0P:(DE-HGF)0$$aDeutz, Sarah$$b2
000877617 7001_ $$0P:(DE-HGF)0$$aSuh, Sangwon$$b3
000877617 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b4$$eCorresponding author$$ufzj
000877617 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1821029116$$gVol. 116, no. 23, p. 11187 - 11194$$n23$$p11187 - 11194$$tProceedings of the National Academy of Sciences of the United States of America$$v116$$x1091-6490$$y2019
000877617 8564_ $$uhttps://juser.fz-juelich.de/record/877617/files/11187.full.pdf$$yRestricted
000877617 8564_ $$uhttps://juser.fz-juelich.de/record/877617/files/11187.full.pdf?subformat=pdfa$$xpdfa$$yRestricted
000877617 909CO $$ooai:juser.fz-juelich.de:877617$$pVDB
000877617 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877617 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877617 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877617 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b4$$kFZJ
000877617 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b4$$kRWTH
000877617 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877617 9141_ $$y2020
000877617 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-16$$wger
000877617 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2018$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-16
000877617 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2018$$d2020-01-16
000877617 920__ $$lyes
000877617 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000877617 980__ $$ajournal
000877617 980__ $$aVDB
000877617 980__ $$aI:(DE-Juel1)IEK-10-20170217
000877617 980__ $$aUNRESTRICTED
000877617 981__ $$aI:(DE-Juel1)ICE-1-20170217