000877621 001__ 877621
000877621 005__ 20240712112906.0
000877621 0247_ $$2doi$$a10.1021/acs.iecr.9b03232
000877621 0247_ $$2ISSN$$a0019-7866
000877621 0247_ $$2ISSN$$a0095-9014
000877621 0247_ $$2ISSN$$a0888-5885
000877621 0247_ $$2ISSN$$a1520-5045
000877621 0247_ $$2ISSN$$a1541-5724
000877621 0247_ $$2ISSN$$a1943-2968
000877621 0247_ $$2altmetric$$aaltmetric:72763188
000877621 0247_ $$2WOS$$aWOS:000505632500014
000877621 037__ $$aFZJ-2020-02336
000877621 082__ $$a660
000877621 1001_ $$0P:(DE-HGF)0$$aGertig, Christoph$$b0
000877621 245__ $$aRx-COSMO-CAMD: Computer-Aided Molecular Design of Reaction Solvents Based on Predictive Kinetics from Quantum Chemistry
000877621 260__ $$aWashington, DC$$bSoc.75198$$c2019
000877621 3367_ $$2DRIVER$$aarticle
000877621 3367_ $$2DataCite$$aOutput Types/Journal article
000877621 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592897352_2792
000877621 3367_ $$2BibTeX$$aARTICLE
000877621 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877621 3367_ $$00$$2EndNote$$aJournal Article
000877621 520__ $$aThe kinetics of chemical reactions in the liquid phase are often strongly determined by the reaction solvent. Consequently, the choice of the optimal solvent is an important task in chemical process design. Because of the vast number of potential solvents, experimental testing of all candidates is infeasible. To explore the design space of possible reaction solvents, computer-aided molecular design (CAMD) methods have been developed. However, state-of-the-art CAMD methods for reaction solvent design consider usually only a limited molecular design space and rely on simplified models fitted to experimental data to predict solvent performance. To overcome these limitations, we here propose Rx-COSMO-CAMD as the method for the design of reaction solvents. Rx-COSMO-CAMD combines CAMD using the genetic optimization algorithm LEA3D with sound prediction of reaction kinetics based on transition-state theory and advanced quantum chemical methods. Thereby, no experimental data are required. The predictions are shown to be computationally efficient and not limited to certain structural groups. Thus, large and diverse molecular design spaces can be explored. To demonstrate the proposed Rx-COSMO-CAMD method, we successfully design solvents, enhancing the reaction kinetics of a Menschutkin reaction and a chain propagation reaction for the production of polymers and microgels. The method is shown to identify promising solvents for significant enhancement of reaction rates. Rx-COSMO-CAMD is therefore a powerful, fully predictive tool for the identification of optimal reaction solvents.
000877621 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877621 588__ $$aDataset connected to CrossRef
000877621 7001_ $$0P:(DE-HGF)0$$aKröger, Leif$$b1
000877621 7001_ $$0P:(DE-HGF)0$$aFleitmann, Lorenz$$b2
000877621 7001_ $$0P:(DE-HGF)0$$aScheffczyk, Jan$$b3
000877621 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b4$$ufzj
000877621 7001_ $$0P:(DE-HGF)0$$aLeonhard, Kai$$b5$$eCorresponding author
000877621 773__ $$0PERI:(DE-600)2103816-8$$a10.1021/acs.iecr.9b03232$$gVol. 58, no. 51, p. 22835 - 22846$$n51$$p22835 - 22846$$tIndustrial & engineering chemistry$$v58$$x1520-5045$$y2019
000877621 8564_ $$uhttps://juser.fz-juelich.de/record/877621/files/acs.iecr.9b03232.pdf$$yRestricted
000877621 8564_ $$uhttps://juser.fz-juelich.de/record/877621/files/acs.iecr.9b03232.pdf?subformat=pdfa$$xpdfa$$yRestricted
000877621 909CO $$ooai:juser.fz-juelich.de:877621$$pVDB
000877621 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877621 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877621 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877621 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000877621 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b4$$kFZJ
000877621 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b4$$kRWTH
000877621 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
000877621 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877621 9141_ $$y2020
000877621 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-03$$wger
000877621 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-03
000877621 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIND ENG CHEM RES : 2018$$d2020-01-03
000877621 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-03
000877621 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-03
000877621 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-03
000877621 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-03
000877621 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-03
000877621 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-03
000877621 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-03
000877621 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-03
000877621 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-03
000877621 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-01-03
000877621 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-03
000877621 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-03
000877621 920__ $$lyes
000877621 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000877621 980__ $$ajournal
000877621 980__ $$aVDB
000877621 980__ $$aI:(DE-Juel1)IEK-10-20170217
000877621 980__ $$aUNRESTRICTED
000877621 981__ $$aI:(DE-Juel1)ICE-1-20170217