001     877621
005     20240712112906.0
024 7 _ |a 10.1021/acs.iecr.9b03232
|2 doi
024 7 _ |a 0019-7866
|2 ISSN
024 7 _ |a 0095-9014
|2 ISSN
024 7 _ |a 0888-5885
|2 ISSN
024 7 _ |a 1520-5045
|2 ISSN
024 7 _ |a 1541-5724
|2 ISSN
024 7 _ |a 1943-2968
|2 ISSN
024 7 _ |a altmetric:72763188
|2 altmetric
024 7 _ |a WOS:000505632500014
|2 WOS
037 _ _ |a FZJ-2020-02336
082 _ _ |a 660
100 1 _ |a Gertig, Christoph
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Rx-COSMO-CAMD: Computer-Aided Molecular Design of Reaction Solvents Based on Predictive Kinetics from Quantum Chemistry
260 _ _ |a Washington, DC
|c 2019
|b Soc.75198
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1592897352_2792
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The kinetics of chemical reactions in the liquid phase are often strongly determined by the reaction solvent. Consequently, the choice of the optimal solvent is an important task in chemical process design. Because of the vast number of potential solvents, experimental testing of all candidates is infeasible. To explore the design space of possible reaction solvents, computer-aided molecular design (CAMD) methods have been developed. However, state-of-the-art CAMD methods for reaction solvent design consider usually only a limited molecular design space and rely on simplified models fitted to experimental data to predict solvent performance. To overcome these limitations, we here propose Rx-COSMO-CAMD as the method for the design of reaction solvents. Rx-COSMO-CAMD combines CAMD using the genetic optimization algorithm LEA3D with sound prediction of reaction kinetics based on transition-state theory and advanced quantum chemical methods. Thereby, no experimental data are required. The predictions are shown to be computationally efficient and not limited to certain structural groups. Thus, large and diverse molecular design spaces can be explored. To demonstrate the proposed Rx-COSMO-CAMD method, we successfully design solvents, enhancing the reaction kinetics of a Menschutkin reaction and a chain propagation reaction for the production of polymers and microgels. The method is shown to identify promising solvents for significant enhancement of reaction rates. Rx-COSMO-CAMD is therefore a powerful, fully predictive tool for the identification of optimal reaction solvents.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kröger, Leif
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fleitmann, Lorenz
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Scheffczyk, Jan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 4
|u fzj
700 1 _ |a Leonhard, Kai
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acs.iecr.9b03232
|g Vol. 58, no. 51, p. 22835 - 22846
|0 PERI:(DE-600)2103816-8
|n 51
|p 22835 - 22846
|t Industrial & engineering chemistry
|v 58
|y 2019
|x 1520-5045
856 4 _ |u https://juser.fz-juelich.de/record/877621/files/acs.iecr.9b03232.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/877621/files/acs.iecr.9b03232.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:877621
|p VDB
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IND ENG CHEM RES : 2018
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-03
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21