001     877624
005     20240709081916.0
024 7 _ |a 10.1016/B978-0-12-818634-3.50118-1
|2 doi
024 7 _ |a 1570-7946
|2 ISSN
024 7 _ |a 2543-1331
|2 ISSN
024 7 _ |a WOS:000495447200118
|2 WOS
037 _ _ |a FZJ-2020-02339
082 _ _ |a 660
100 1 _ |a Baumgärtner, Nils
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 29th European Symposium on Computer Aided Process Engineering
|c Eindhoven
|d 2019-06-16 - 2019-06-19
|w The Netherlands
245 _ _ |a From peak power prices to seasonal storage: Long-term operational optimization of energy systems by time-series decomposition
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier
300 _ _ |a 703 - 708
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1592766538_26608
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Computer Aided Chemical Engineering
|v 46
520 _ _ |a Long-term operation of energy systems is a complex optimization task. Often, such long-term operational optimizations are solved by direct decomposing the problem into smaller subproblems. However, direct decomposition is not possible for problems with time-coupling constraints and variables. Such time-coupling is common in energy systems, e.g., due to peak power prices and (seasonal) energy storage. To efficiently solve coupled long-term operational optimization problems, we propose a time-series decomposition method. The proposed method calculates lower and upper bounds to obtain a feasible solution of the original problem with known quality. We compute lower bounds by the Branch-and-Cut algorithm. For the upper bound, we decompose complicating constraints and variables into smaller subproblems. The solution of these subproblems are recombined to obtain a feasible solution for the long-term operational optimization. To tighten the upper bound, we iteratively decrease the number of subproblems. In a case study for an industrial energy system, we show that the proposed time-series decomposition method converges fast, outperforming a commercial state-of-the-art solver.
536 _ _ |a 153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)
|0 G:(DE-HGF)POF3-153
|c POF3-153
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series
700 1 _ |a Shu, David Yang
|0 P:(DE-Juel1)176240
|b 1
|u fzj
700 1 _ |a Bahl, Björn
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hennen, Maike
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/B978-0-12-818634-3.50118-1
909 C O |o oai:juser.fz-juelich.de:877624
|p VDB
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176240
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|l Technologie, Innovation und Gesellschaft
|1 G:(DE-HGF)POF3-150
|0 G:(DE-HGF)POF3-153
|2 G:(DE-HGF)POF3-100
|v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21