001     877625
005     20240709081916.0
024 7 _ |a 10.1016/B978-0-12-818634-3.50070-9
|2 doi
024 7 _ |a 1570-7946
|2 ISSN
024 7 _ |a 2543-1331
|2 ISSN
024 7 _ |a WOS:000495447200070
|2 WOS
037 _ _ |a FZJ-2020-02340
082 _ _ |a 660
100 1 _ |a Gertig, Christoph
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 29th European Symposium on Computer Aided Process Engineering
|c Eindhoven
|d 2019-06-16 - 2019-06-19
|w The Netherlands
245 _ _ |a Integrated Design of Solvents and Processes based on Reaction Kinetics from Quantum Chemical Prediction Methods
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier
300 _ _ |a 415 - 420
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1592817962_25977
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Computer Aided Chemical Engineering
|v 46
520 _ _ |a The choice of the employed solvent often strongly influences the performance of chemical processes. To obtain optimal process designs, we propose a method for the integrated in silico design of solvents and reaction-based processes. The search space of possible solvent molecules is explored by a genetic optimization algorithm which is directly linked to gradient-based process optimization. Thereby, the process performance of the designed solventis evaluated. While most approaches for such integrated design problems are based on group contribution methods and limited to equilibrium properties, we here propose a quantum mechanics-based approach to capture reaction kinetics. The integrated design method is successfully applied to the design of solvent and process for a carbamate cleavage reaction. The presented method allows for efficient design of a large number of promising solvents within the integrated reaction solvent and process design.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series
700 1 _ |a Leonhard, Kai
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/B978-0-12-818634-3.50070-9
909 C O |o oai:juser.fz-juelich.de:877625
|p VDB
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21