001     877627
005     20240709082146.0
024 7 _ |a 10.1016/B978-0-12-818634-3.50242-3
|2 doi
024 7 _ |a 1570-7946
|2 ISSN
024 7 _ |a 2543-1331
|2 ISSN
024 7 _ |a WOS:000495452400053
|2 WOS
037 _ _ |a FZJ-2020-02342
082 _ _ |a 660
100 1 _ |a Kleinekorte, Johanna
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 29th European Symposium on Computer Aided Process Engineering
|c Eindhoven
|d 2019-06-16 - 2019-06-19
|w The Netherlands
245 _ _ |a A Neural Network-Based Framework to Predict Process-Specific Environmental Impacts
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier
300 _ _ |a 1447 - 1452
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1592835260_25977
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Computer Aided Chemical Engineering
|v 46
520 _ _ |a Growing environmental concern and strict regulations led to an increasing effort of the chemical industry to develop greener production pathways. To ensure that this development indeed improves environmental aspects requires an early-stage estimation of the environmental impact in early process design. An accepted method to evaluate the environmental impact is Life Cycle Assessment (LCA). However, LCA requires detailed data on mass and energy balances, which is usually limited in early process design. Therefore, predictive LCA approaches are required. Current predictive LCA approaches estimate the environmental impacts of chemicals only based on molecular descriptors. Thus, the predicted impacts are independent from the chosen production process. A potentially greener process cannot be distinguished from the conventional route. In this work, we propose a fully predictive, neural network-based framework, which utilizes both molecular and process descriptors to distinguish between production pathways. The framework is fully automatized and includes feature selection, setup of the network architecture, and predicts 17 environmental impact categories. The pathway-specific prediction is illustrated for two examples, comparing the CO2-based production of methanol and formic acid to their respective fossil production pathway. The presented framework is competitive to LCA predictions from literature but can now also distinguish between process alternatives. Thus, our framework can serve as initial screening tool to identify environmentally beneficial process alternatives.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series
700 1 _ |a Kröger, Leif
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Leonhard, Kai
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/B978-0-12-818634-3.50242-3
909 C O |o oai:juser.fz-juelich.de:877627
|p VDB
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21