001     877628
005     20240709081916.0
024 7 _ |a 10.1016/B978-0-12-818634-3.50028-X
|2 doi
024 7 _ |a 1570-7946
|2 ISSN
024 7 _ |a 2543-1331
|2 ISSN
024 7 _ |a WOS:000495447200028
|2 WOS
037 _ _ |a FZJ-2020-02343
082 _ _ |a 660
100 1 _ |a Tillmanns, Dominik
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 29th European Symposium on Computer Aided Process Engineering
|c Eindhoven
|d 2019-06-16 - 2019-06-19
|w The Netherlands
245 _ _ |a ORC on tour: Integrated design of dynamic ORC processes and working fluids for waste-heat recovery from heavy-duty vehicles
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier
300 _ _ |a 163 - 168
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1592766478_26607
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Computer Aided Chemical Engineering
|v 46
520 _ _ |a Organic Rankine Cycles (ORC) convert low temperature heat into power. To maximize conversion efficiency, both ORC process and working fluid have to be tailored to the specific application. Common solution approaches for the resulting integrated design of ORC process and working fluid are limited to steady-state applications. However, for applications in dynamic settings, steady-state design approaches can lead to suboptimal solutions due to the neglect of the dynamic behavior. In this work, we present an approach for the integrated design of ORC process and working fluid considering the dynamics. The approach is based on the Continuous-Molecular Targeting–Computer-aided Molecular Design (CoMT-CAMD) framework. Herein, the physically based Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) is used as thermodynamic model. To capture the ORC behavior under dynamic conditions, dynamic models for the ORC equipment are integrated into the process model. The result is an optimal control problem (OCP) yielding an optimal working fluid and the corresponding optimal process control for a given dynamic input. This so-called dynamic CoMT-CAMD approach is applied to an ORC for waste-heat recovery on a heavy-duty vehicle. Whereas steady-state design approaches fail, the presented approach identifies the optimal working fluid and the corresponding optimal control of the ORC process.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series
700 1 _ |a Petzschmann, Jonas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schilling, Johannes
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gertig, Christoph
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/B978-0-12-818634-3.50028-X
909 C O |o oai:juser.fz-juelich.de:877628
|p VDB
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21