000877629 001__ 877629
000877629 005__ 20240712112908.0
000877629 0247_ $$2doi$$a10.1039/C9GC00267G
000877629 0247_ $$2ISSN$$a1463-9262
000877629 0247_ $$2ISSN$$a1463-9270
000877629 0247_ $$2altmetric$$aaltmetric:60398116
000877629 0247_ $$2WOS$$aWOS:000471798100009
000877629 037__ $$aFZJ-2020-02344
000877629 082__ $$a540
000877629 1001_ $$0P:(DE-HGF)0$$aMeys, Raoul$$b0
000877629 245__ $$aTowards sustainable elastomers from CO 2 : life cycle assessment of carbon capture and utilization for rubbers
000877629 260__ $$aCambridge$$bRSC$$c2019
000877629 3367_ $$2DRIVER$$aarticle
000877629 3367_ $$2DataCite$$aOutput Types/Journal article
000877629 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592831766_25393
000877629 3367_ $$2BibTeX$$aARTICLE
000877629 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877629 3367_ $$00$$2EndNote$$aJournal Article
000877629 520__ $$aElastomers have been recently proposed to integrate CO2 as carbon feedstock. These elastomers are produced by reacting carbon dioxide with propylene oxide and maleic anhydride. The resulting cross-linkable polyether carbonate polyols can be combined with isocyanates to form a novel class of polymers: CO2-based rubbers. These CO2-based rubbers are able to substitute conventional rubbers in synthetic elastomer products, such as sealants or flexible tubes. In this work, we present the first Life Cycle Assessment for CO2-based rubbers. To compare CO2-based and conventional rubbers our assessment considers all relevant life cycle stages from cradle-to-grave. The production system of CO2-based rubbers encompasses a nearby ammonia plant as a CO2 source, the conversion of CO2 to polyols, the reaction of polyols with isocyanates and finally, the incineration of CO2-based rubbers. Our analysis shows that CO2-based rubbers containing approx. 20% wt. CO2 have a global warming impact of 4.93 kg CO2-eq. Thus, CO2-based rubbers are no carbon sink. However, CO2-based rubbers reduce global warming impact by up to 34% if they substitute, for example, hydrogenated nitrile butadiene rubber on an equal mass basis. Fossil resource depletion is reduced by up to 33%. In contrast, other impact categories like ionizing radiation are increased by the utilization of CO2-based rubbers in some cases. Thus, our study indicates that CO2-based rubbers provide a promising pathway to reduce global warming impact and fossil resource depletion. However, it is likely that some other environmental impact categories such as ionizing radiation and freshwater eutrophication are increased.
000877629 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877629 588__ $$aDataset connected to CrossRef
000877629 7001_ $$0P:(DE-HGF)0$$aKätelhön, Arne$$b1
000877629 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b2$$eCorresponding author$$ufzj
000877629 773__ $$0PERI:(DE-600)2006274-6$$a10.1039/C9GC00267G$$gVol. 21, no. 12, p. 3334 - 3342$$n12$$p3334 - 3342$$tGreen chemistry$$v21$$x1463-9270$$y2019
000877629 8564_ $$uhttps://juser.fz-juelich.de/record/877629/files/c9gc00267g.pdf$$yRestricted
000877629 8564_ $$uhttps://juser.fz-juelich.de/record/877629/files/c9gc00267g.pdf?subformat=pdfa$$xpdfa$$yRestricted
000877629 909CO $$ooai:juser.fz-juelich.de:877629$$pVDB
000877629 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877629 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877629 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b2$$kFZJ
000877629 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b2$$kRWTH
000877629 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877629 9141_ $$y2020
000877629 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-01-02$$wger
000877629 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-02$$wger
000877629 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-02$$wger
000877629 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGREEN CHEM : 2018$$d2020-01-02
000877629 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-02
000877629 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-02
000877629 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-02
000877629 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-02
000877629 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-02
000877629 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-02
000877629 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-02
000877629 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-02
000877629 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-02
000877629 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-02
000877629 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-01-02
000877629 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-02
000877629 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGREEN CHEM : 2018$$d2020-01-02
000877629 920__ $$lyes
000877629 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000877629 980__ $$ajournal
000877629 980__ $$aVDB
000877629 980__ $$aI:(DE-Juel1)IEK-10-20170217
000877629 980__ $$aUNRESTRICTED
000877629 981__ $$aI:(DE-Juel1)ICE-1-20170217