000877631 001__ 877631
000877631 005__ 20240709081916.0
000877631 0247_ $$2doi$$a10.1016/j.compchemeng.2018.01.023
000877631 0247_ $$2ISSN$$a0098-1354
000877631 0247_ $$2ISSN$$a1873-4375
000877631 0247_ $$2altmetric$$aaltmetric:33195634
000877631 0247_ $$2WOS$$aWOS:000427486800008
000877631 037__ $$aFZJ-2020-02346
000877631 082__ $$a660
000877631 1001_ $$0P:(DE-HGF)0$$aBahl, Björn$$b0
000877631 245__ $$aRigorous synthesis of energy systems by decomposition via time-series aggregation
000877631 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000877631 3367_ $$2DRIVER$$aarticle
000877631 3367_ $$2DataCite$$aOutput Types/Journal article
000877631 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592807931_25977
000877631 3367_ $$2BibTeX$$aARTICLE
000877631 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877631 3367_ $$00$$2EndNote$$aJournal Article
000877631 520__ $$aThe synthesis of complex energy systems usually involves large time series such that a direct optimization is computationally prohibitive. In this paper, we propose a decomposition method for synthesis problems using time-series aggregation. To initialize the method, the time series is aggregated to one time step. A lower bound is obtained by relaxing the energy balances and underestimating the energy demands leading to a relaxed synthesis problem, which is efficiently solvable. An upper bound is obtained by restricting the original problem with the full time series to an operation problem with a fixed structure obtained from the lower bound solution. If the bounds do not satisfy the specified optimality gap, the resolution of the time-series aggregation is iteratively increased. The decomposition method is applied to two real-world synthesis problems. The results show the fast convergence of the decomposition method outperforming commercial state-of-the-art optimization software.
000877631 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877631 588__ $$aDataset connected to CrossRef
000877631 7001_ $$0P:(DE-HGF)0$$aLützow, Julian$$b1
000877631 7001_ $$0P:(DE-HGF)0$$aShu, David$$b2
000877631 7001_ $$0P:(DE-HGF)0$$aHollermann, Dinah Elena$$b3
000877631 7001_ $$0P:(DE-HGF)0$$aLampe, Matthias$$b4
000877631 7001_ $$0P:(DE-HGF)0$$aHennen, Maike$$b5
000877631 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b6$$eCorresponding author$$ufzj
000877631 773__ $$0PERI:(DE-600)1499971-7$$a10.1016/j.compchemeng.2018.01.023$$gVol. 112, p. 70 - 81$$p70 - 81$$tComputers & chemical engineering$$v112$$x0098-1354$$y2018
000877631 909CO $$ooai:juser.fz-juelich.de:877631$$pVDB
000877631 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877631 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877631 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877631 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000877631 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
000877631 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
000877631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b6$$kFZJ
000877631 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b6$$kRWTH
000877631 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877631 9141_ $$y2020
000877631 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000877631 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000877631 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-14
000877631 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000877631 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000877631 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000877631 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-14
000877631 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT CHEM ENG : 2018$$d2020-01-14
000877631 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000877631 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-14
000877631 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-14
000877631 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-14
000877631 920__ $$lyes
000877631 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000877631 980__ $$ajournal
000877631 980__ $$aVDB
000877631 980__ $$aI:(DE-Juel1)IEK-10-20170217
000877631 980__ $$aUNRESTRICTED
000877631 981__ $$aI:(DE-Juel1)ICE-1-20170217