001     877634
005     20240709081916.0
024 7 _ |a 10.1016/B978-0-444-64241-7.50402-X
|2 doi
024 7 _ |a 1570-7946
|2 ISSN
024 7 _ |a 2543-1331
|2 ISSN
037 _ _ |a FZJ-2020-02349
082 _ _ |a 660
100 1 _ |a Schilling, Johannes
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 13th International Symposium on Process Systems Engineering (PSE 2018)
|c San Diego
|d 2018-07-01 - 2018-07-05
|w United States
245 _ _ |a Integrated design of ORC process and working fluid for transient waste-heat recovery from heavy-duty vehicles
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier
300 _ _ |a 2443 - 2448
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1592807881_24929
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Computer Aided Chemical Engineering
|v 44
520 _ _ |a Organic Rankine Cycles (ORC) transform low- and medium-temperature heat into mechanical power. One promising application of ORCs is the recovery of exhaust gas heat from heavy-duty vehicles. To utilize the full potential of the transient exhaust gas heat, both, the ORC process and working fluid have to be designed. To integrate the working fluid design into the process design, we developed the so-called 1-stage CoMT-CAMD approach, which allows us to identify the optimal combination of ORC process and working fluid. However, 1-stage CoMT-CAMD is limited to steady-state heat input preventing the consideration of the transient exhaust gas behavior. In this work, we propose an iterative algorithm combining 1-stage CoMT-CAMD with time-series aggregation to tackle the challenge of transient exhaust gas behavior, so-called time-resolved 1-stage CoMT-CAMD. By using time-series aggregation, the transient exhaust gas behavior can be represented with sufficient accuracy by a few time steps serving as quasi-steady-state input for 1-stage CoMT-CAMD. The presented algorithm efficiently identifies the optimal working fluid and ORC process while capturing the transient exhaust gas behavior.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series
700 1 _ |a Eichler, Katharina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pischinger, Stefan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/B978-0-444-64241-7.50402-X
909 C O |o oai:juser.fz-juelich.de:877634
|p VDB
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21