001     877639
005     20220930130243.0
024 7 _ |a 10.1007/s00396-020-04674-9
|2 doi
024 7 _ |a 0023-2904
|2 ISSN
024 7 _ |a 0303-402X
|2 ISSN
024 7 _ |a 0368-6590
|2 ISSN
024 7 _ |a 0372-820X
|2 ISSN
024 7 _ |a 1435-1536
|2 ISSN
024 7 _ |a 2128/25470
|2 Handle
024 7 _ |a WOS:000541320000001
|2 WOS
037 _ _ |a FZJ-2020-02354
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Frielinghaus, Henrich
|0 P:(DE-Juel1)130646
|b 0
|e Corresponding author
245 _ _ |a On the glass transition and correlation functions
260 _ _ |a Heidelberg
|c 2020
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617218370_1361
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Correlation functions are the basis for the understanding of many thermodynamic systems that can be directly observed by scattering experiments. In this manuscript, the correlation functions include the steric repulsion of atoms that also leads to distinct shells of neighbors. A free energy is derived on the basis of these assumptions, and in the following the temperature dependence of the density (or specific volume), the typical time scale of the α-relaxation, and the heat capacity. From this, I argue that the glass transition is dominated by the vicinity of a first-order phase transition. While the correlation length stays rather constant in the vicinity of the glass transition, the intensity of the fluctuations is considerably increasing. The scattering amplitude is connected to the cluster size, also introduced in the cooperativity argument. Additionally, correlations of loops are discussed. The additional correlations describe rather small structures. Applying this to scattering intensities, a correlation peak was described that may be connected to the “Boson Peak” or a “cooperativity length.” The new concept of correlation functions on sterically repulsive atoms may find more attention in the wider field of physics.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 0
536 _ _ |a 6G15 - FRM II / MLZ (POF3-6G15)
|0 G:(DE-HGF)POF3-6G15
|c POF3-6G15
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 1 7 |a Polymers, Soft Nano Particles and Proteins
|0 V:(DE-MLZ)GC-1602-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
773 _ _ |a 10.1007/s00396-020-04674-9
|0 PERI:(DE-600)1462029-7
|p 1159–1168
|t Colloid & polymer science
|v 298
|y 2020
|x 1435-1536
856 4 _ |u https://juser.fz-juelich.de/record/877639/files/Frielinghaus2020_Article_OnTheGlassTransitionAndCorrela.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/877639/files/Frielinghaus2020_Article_OnTheGlassTransitionAndCorrela.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:877639
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB:MLZ
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130646
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|x 1
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COLLOID POLYM SCI : 2018
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-09
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-01-09
|w ger
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-09
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 1
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21