000877642 001__ 877642
000877642 005__ 20220930130243.0
000877642 0247_ $$2doi$$a10.3390/agronomy10060895
000877642 0247_ $$2Handle$$a2128/25210
000877642 0247_ $$2altmetric$$aaltmetric:84565991
000877642 0247_ $$2WOS$$aWOS:000551549200001
000877642 037__ $$aFZJ-2020-02356
000877642 041__ $$aEnglish
000877642 082__ $$a640
000877642 1001_ $$00000-0001-5169-0206$$aHerzel, Hannes$$b0$$eCorresponding author
000877642 245__ $$aSoybean Fertilized by P-Phases from Bagasse-Based Materials: P-Extraction Procedures, Diffusive Gradients in Thin Films (DGT), and X-ray Diffraction Analysis (XRD)
000877642 260__ $$aBasel$$bMDPI$$c2020
000877642 3367_ $$2DRIVER$$aarticle
000877642 3367_ $$2DataCite$$aOutput Types/Journal article
000877642 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593607924_9488
000877642 3367_ $$2BibTeX$$aARTICLE
000877642 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877642 3367_ $$00$$2EndNote$$aJournal Article
000877642 520__ $$aThe Brazilian sugarcane industry produced around 173 million tons (Mt) of bagasse in 2018. Bagasse is a by-product of juice extraction for ethanol and sugar production and is combusted in order to generate power, producing up to 10 Mt of ash per year. This ash contains various concentrations of plant nutrients, which allow the ash to be used as a crop fertilizer. However, the concentration and extractability of phosphorus (P), an essential plant nutrient, are low in bagasse ash. To increase the P content, we co-gasified and co-combusted bagasse with P-rich chicken manure. The resulting ash was thermochemically post-treated with alkali additives (Na2SO4 and K2SO4) to increase the availability of P to plants. We aimed to: (i) investigate the effect of thermochemical post-treatment of co-gasification residue and co-combustion ash on P availability to soybeans, (ii) explore the potential of chemical extraction methods (citric acid, neutral ammonium citrate, formic acid, and Mehlich-I) and diffusive gradients in thin films (DGT) to predict the availability of P to soybeans, and (iii) identify the responsible P-phases using X-ray diffraction . We evaluated P availability to soybeans growing in Brazilian Oxisol soil in two independent greenhouse pot experiments. The positive effect of thermochemical treatment on P availability from gasification residue was confirmed through the observation of increased P uptake and biomass in soybean plants. These findings were confirmed by chemical extraction methods and DGT. The gasification residue contained whitlockite as its main P-bearing phase. Thermochemical post-treatment converted whitlockite into highly soluble CaNaPO4. In contrast, co-combustion ash already contained highly soluble Ca(Na,K)PO4 as its main P-bearing phase, making thermochemical post-treatment unnecessary for increasing P availability. In conclusion, increased extractability and availability of P for soybeans were closely connected to the formation of calcium alkali phosphate. Our findings indicate that this combined methodology allows for the prediction of P-fertilization effects of ash.
000877642 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000877642 588__ $$aDataset connected to CrossRef
000877642 7001_ $$0P:(DE-Juel1)168421$$aDombinov, Vitalij$$b1$$eCorresponding author
000877642 7001_ $$0P:(DE-HGF)0$$aVogel, Christian$$b2
000877642 7001_ $$0P:(DE-Juel1)133857$$aWillbold, Sabine$$b3$$ufzj
000877642 7001_ $$0P:(DE-HGF)0$$aLevandowski, Gabriel Vettorazzi$$b4
000877642 7001_ $$0P:(DE-HGF)0$$aMüller, Felix$$b5
000877642 7001_ $$0P:(DE-HGF)0$$aMeiller, Martin$$b6
000877642 7001_ $$0P:(DE-HGF)0$$aZang, Joachim Werner$$b7
000877642 7001_ $$0P:(DE-HGF)0$$aFonseca-Zang, Warde Antonieta da$$b8
000877642 7001_ $$0P:(DE-Juel1)129475$$aJablonowski, Nicolai David$$b9
000877642 7001_ $$0P:(DE-Juel1)166424$$aSchrey, Silvia Diana$$b10$$ufzj
000877642 7001_ $$0P:(DE-HGF)0$$aAdam, Christian$$b11
000877642 773__ $$0PERI:(DE-600)2607043-1$$a10.3390/agronomy10060895$$gVol. 10, no. 6, p. 895 -$$n6$$p895 -$$tAgronomy$$v10$$x2073-4395$$y2020
000877642 8564_ $$uhttps://juser.fz-juelich.de/record/877642/files/InvoiceI_agronomy-806729.pdf
000877642 8564_ $$uhttps://juser.fz-juelich.de/record/877642/files/Herzel%20et%20al.%202020.pdf$$yOpenAccess
000877642 8564_ $$uhttps://juser.fz-juelich.de/record/877642/files/InvoiceI_agronomy-806729.pdf?subformat=pdfa$$xpdfa
000877642 8564_ $$uhttps://juser.fz-juelich.de/record/877642/files/Herzel%20et%20al.%202020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877642 8767_ $$8agronomy-806729$$92020-06-20$$d2020-06-23$$eAPC$$jZahlung erfolgt$$pagronomy-806729$$zBelegnr. 1200154171
000877642 909CO $$ooai:juser.fz-juelich.de:877642$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000877642 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11
000877642 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877642 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAGRONOMY-BASEL : 2018$$d2020-01-11
000877642 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-11
000877642 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-11
000877642 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11
000877642 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-11
000877642 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11
000877642 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-11
000877642 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877642 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-11
000877642 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-11
000877642 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-01-11
000877642 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-11
000877642 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11
000877642 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11
000877642 9141_ $$y2020
000877642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168421$$aForschungszentrum Jülich$$b1$$kFZJ
000877642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133857$$aForschungszentrum Jülich$$b3$$kFZJ
000877642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129475$$aForschungszentrum Jülich$$b9$$kFZJ
000877642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166424$$aForschungszentrum Jülich$$b10$$kFZJ
000877642 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000877642 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000877642 980__ $$ajournal
000877642 980__ $$aVDB
000877642 980__ $$aUNRESTRICTED
000877642 980__ $$aI:(DE-Juel1)IBG-2-20101118
000877642 980__ $$aAPC
000877642 9801_ $$aAPC
000877642 9801_ $$aFullTexts