001     877642
005     20220930130243.0
024 7 _ |2 doi
|a 10.3390/agronomy10060895
024 7 _ |2 Handle
|a 2128/25210
024 7 _ |2 altmetric
|a altmetric:84565991
024 7 _ |a WOS:000551549200001
|2 WOS
037 _ _ |a FZJ-2020-02356
041 _ _ |a English
082 _ _ |a 640
100 1 _ |0 0000-0001-5169-0206
|a Herzel, Hannes
|b 0
|e Corresponding author
245 _ _ |a Soybean Fertilized by P-Phases from Bagasse-Based Materials: P-Extraction Procedures, Diffusive Gradients in Thin Films (DGT), and X-ray Diffraction Analysis (XRD)
260 _ _ |a Basel
|b MDPI
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1593607924_9488
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The Brazilian sugarcane industry produced around 173 million tons (Mt) of bagasse in 2018. Bagasse is a by-product of juice extraction for ethanol and sugar production and is combusted in order to generate power, producing up to 10 Mt of ash per year. This ash contains various concentrations of plant nutrients, which allow the ash to be used as a crop fertilizer. However, the concentration and extractability of phosphorus (P), an essential plant nutrient, are low in bagasse ash. To increase the P content, we co-gasified and co-combusted bagasse with P-rich chicken manure. The resulting ash was thermochemically post-treated with alkali additives (Na2SO4 and K2SO4) to increase the availability of P to plants. We aimed to: (i) investigate the effect of thermochemical post-treatment of co-gasification residue and co-combustion ash on P availability to soybeans, (ii) explore the potential of chemical extraction methods (citric acid, neutral ammonium citrate, formic acid, and Mehlich-I) and diffusive gradients in thin films (DGT) to predict the availability of P to soybeans, and (iii) identify the responsible P-phases using X-ray diffraction . We evaluated P availability to soybeans growing in Brazilian Oxisol soil in two independent greenhouse pot experiments. The positive effect of thermochemical treatment on P availability from gasification residue was confirmed through the observation of increased P uptake and biomass in soybean plants. These findings were confirmed by chemical extraction methods and DGT. The gasification residue contained whitlockite as its main P-bearing phase. Thermochemical post-treatment converted whitlockite into highly soluble CaNaPO4. In contrast, co-combustion ash already contained highly soluble Ca(Na,K)PO4 as its main P-bearing phase, making thermochemical post-treatment unnecessary for increasing P availability. In conclusion, increased extractability and availability of P for soybeans were closely connected to the formation of calcium alkali phosphate. Our findings indicate that this combined methodology allows for the prediction of P-fertilization effects of ash.
536 _ _ |0 G:(DE-HGF)POF3-582
|a 582 - Plant Science (POF3-582)
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)168421
|a Dombinov, Vitalij
|b 1
|e Corresponding author
700 1 _ |0 P:(DE-HGF)0
|a Vogel, Christian
|b 2
700 1 _ |0 P:(DE-Juel1)133857
|a Willbold, Sabine
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Levandowski, Gabriel Vettorazzi
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Müller, Felix
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Meiller, Martin
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Zang, Joachim Werner
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Fonseca-Zang, Warde Antonieta da
|b 8
700 1 _ |0 P:(DE-Juel1)129475
|a Jablonowski, Nicolai David
|b 9
700 1 _ |0 P:(DE-Juel1)166424
|a Schrey, Silvia Diana
|b 10
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Adam, Christian
|b 11
773 _ _ |0 PERI:(DE-600)2607043-1
|a 10.3390/agronomy10060895
|g Vol. 10, no. 6, p. 895 -
|n 6
|p 895 -
|t Agronomy
|v 10
|x 2073-4395
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/877642/files/InvoiceI_agronomy-806729.pdf
856 4 _ |u https://juser.fz-juelich.de/record/877642/files/Herzel%20et%20al.%202020.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/877642/files/InvoiceI_agronomy-806729.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/877642/files/Herzel%20et%20al.%202020.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:877642
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)168421
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)133857
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129475
|a Forschungszentrum Jülich
|b 9
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)166424
|a Forschungszentrum Jülich
|b 10
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-582
|1 G:(DE-HGF)POF3-580
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2020-01-11
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b AGRONOMY-BASEL : 2018
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Blind peer review
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|f 2020-01-11
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2020-01-11
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21