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Abstract The reliable simulation of pedestrian movement is an essential tool for the secu-

rity aware design and analysis of buildings and infrastructure. We developed HyDEFS, an

event-driven dynamic flow simulation software which is designed to simulate pedestrian

movement depending on varying routing decisions of the individual users and varying

constraints. HyDEFS uses given density depending velocities to model congestions and

evaluates flow distributions with respect to average and maximum travel time. This is

of particular importance when considering evacuation scenarios. We apply HyDEFS on

two small networks and cross validate its results by time-discrete and time-continuous

calculations.

Keywords Pedestrians · event-driven simulation software · varying routing · macroscopic

1 Introduction

Modelling and simulation of pedestrian flows are often applied to the design of traffic

infrastructures or the evaluation of rescue routes [1–3]. The goal of the investigations is

to avoid long lasting congestions or to minimize evacuation times of a building. In order

to consider individual pedestrian characteristics such as free walking speed, size, reaction

times, etc. mostly agent based models are used. These models calculate locations and

speed of individual pedestrians and their interaction with the environment rule-based or

using coupled ordinary differential equations [4].
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With respect to route selections these models and simulations use simplifying assump-

tions. For example, that all pedestrians choose the shortest path [5] or the fastest route

[6]. When choosing a route along the shortest path, it is implicitly assumed that all pedes-

trians have complete knowledge of the possible routes. In real systems, however, this

knowledge depends on the users of the building. While in schools and office buildings it

can be assumed that the users are familiar with the infrastructure, in subway stations or

railway stations, however, this is not necessarily the case. The simplification is also sig-

nificant when assuming that pedestrians choose the fastest route, since knowledge about

the occupancy level would only be given if all routes can be viewed by the pedestrian.

For a more realistic modelling of route selection and knowledge about building struc-

tures, first approaches exist which, for example, consider the perception of congestion

in front of doors for a rerouting [7], introduce different knowledge levels and uncertain-

ties about distances [8, 9], modelling the influence of signage [10–12] or incorporating

knowledge about the building by modelling cognitive maps, landmarks or generalised

knowledge [13]. Although this progress has been achieved, in practice analyses are lim-

ited to a few explicit route selection scenarios. For time and cost reasons, it is impossible

to consider all possible factors.

The discussion in the previous paragraph considers the system from the pedestrian’s

point of view. However, this process can also be seen as the flow of people on a network

of paths (e.g. escape routes from a building).

For the modelling of flows on networks there are mathematically, physically and engi-

neeringly motivated approaches. Since pedestrians could be considered as directed flows

of self-driven particles, the approaches to describe flows on networks for Internet or ve-

hicular traffic are similar. In mathematics mostly PDEs are used to describe the dynamics

on the edges [14–17], in physics and engineering microscopic or agent-based models are

used [18–26]. In order to model flows at junctions and crossings of a network, the mathe-

matical models introduced in [14,15] rely on assumptions for the distribution of the flows.

However, empirical data for the distribution are rare [27, 28] and could depend on vari-

ous factors including properties of the network or its infrastructure, like signage or traffic

lights. By using agent-based models, individual route decisions can be taken into account,

depending on, besides others, knowledge about shortest paths and psychological factors

such as keeping away from walls or following others [18]. For networks of escape routes

in buildings the simulations in [7, 13] show how different assumptions for the strategy of

route choices influence the evacuation time. To consider larger networks, discrete formu-

lations of PDE models are also used for pedestrians [19]. In networks for vehicle traffic,

the effects of route decisions on vehicle traffic (traffic lights and traffic jams) [20, 21] or

network properties such as the betweenness [22, 23] were investigated. But also here the

models are based on assumptions how the decisions are made.

Considering the complexity of the system already small networks for driven particles

show complex phenomena such as the improvement of the evacuation time by reducing

the flow at doors [24] or the increase of travel times by introducing an additional route

option outlined by the Braess paradox [29,30]. Recent work on the Braess paradox reveals

a complex structure of the phase diagram and its dependence on the length ratios of the

routes [25] or on assumptions about the route choice of the users [26].
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The work presented in [25, 26] already studied all possible distributions of flows on

a network by using a microscopic model and analysing the phase space by a fine dis-

cretization. It precisely maps the dynamics of the flows on the network but requires a

high computing effort.

The discussion shows that a realistic evaluation of small networks is already difficult

and requires that the models and simulations take into account a high variability of the

user’s route decisions.

To be able to consider all possible distributions of flows and to parametrize properties of

the network or its infrastructure we aim to introduce a simpler approach. First a simulation

software HyDEFS based on an event-driven dynamics is introduced. Simulation results

of a simple scenario are presented and then these are verified against analytic results for

a continuous, as well as a discrete, flow model of the same scenario. Finally, a more

complex scenario is studied with the new method.

The approach presented in this article is aimed at allowing to investigate such multi-

parameter variability also in larger networks. This is also the basis for a future analytic

description of the system in order to optimize or to increase the robustness of the network

with respect to variations of the distribution of the flows.

2 The HyDEFS software

The experiments in this work have been done with the HyDEFS (Hybrid Density-depend-

ent Event-driven Flow Simulation) package developed by the authors. The purpose of

this software is the simulation of pedestrian flows under varying routing decisions or side

constraints. The software allows the simulation of “groups” of persons moving within a

network, where the velocity depends on the density, i.e., on the number of persons that

are currently on the same edge.

We consider a network G = (V,E) with n nodes and m (directed) edges e = (v,w),
allowing to move from node v to node w. Groups of persons may enter the network at

some of the nodes, v ∈Vin ⊂V , and leave it at some other nodes, v ∈Vout ⊂V .

In our approach, an event ε = (tarr,qarr,vcur,ein) represents a group of qarr > 0 persons

arriving at time tarr at a node vcur, coming from one of vcur’s incoming edges, ein. In

particular, the persons entering the network are the events known at the beginning of the

simulation, εin = (tin,qin,vin,0), where 0 stands for “not coming from an edge.” Through-

out the simulation, the currently known event points are kept in an event point schedule

E , which is organized as a priority queue w.r.t. the events’ time component.

If an event point ε = (tarr,qarr,vcur,ein) corresponds to a group arriving at a “terminal”

node vcur ∈ Vout and thus leaving the network, then this fact is recorded for the final

statistics on, among others, average and maximum time of leaving. Otherwise, the group

is distributed over the edges eout starting at node vcur. To this end, each edge of the

network has been assigned a probability prob(e), such that

∑
eout=(v,w)∈E

prob(eout) = 1 for all v ∈V \Vout,
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set load(e) = 0 for all e ∈ E { current load (number of persons) on the edge }
starting with E = /0, insert all (tin,qin,vin,0) corresponding to groups entering the network

while E 6= /0

extract a t-minimal event point ε = (tarr,qarr,vcur,ein) from E

reduce load(ein) by qarr { remove group from incoming edge, only if ein 6= 0 }
if vcur ∈Vout

record that qarr persons have left the network at time tarr

else { distribute the group over the edges starting at node vcur }
for all outgoing edges eout = (vcur,vnext) such that prob(eout)> 0

qout = qarr ·prob(eout)
increase load(eout) by qout

tnext = tarr + len(eout)/vout, where vout = feout
(ρ(eout)) is the current velocity

corresponding to density ρ(eout) = load(eout)/len(eout) on the edge

insert (tnext,qout,vnext,eout) into E

Figure 1 Density-dependent, event point-based movement of groups in HyDEFS.

and a portion prob(eout) ·qarr of the group is sent over edge eout. It progresses with a veloc-

ity that depends on the (new) density ρout on the edge, that is, on the “load” of the edge (the

number of persons currently moving on it), load(eout), and on its length, len(eout). More

precisely, the velocity is given by vout = feout(ρout), where ρout = load(eout)/len(eout), and

feout is a function that can be prescribed for each edge; see below.

The core of the simulation is summarized in Fig. 1. Note that the term “group of

persons” is to be understood in a wider sense, q taking non-integer values in general. Also,

subdividing the groups at each node increases the number of event points, but it allows

tracing all possible paths and their probabilities with a single simulation, thus obviating

the need for a sampling process over single instances, as done in many item-tracking

approaches.

Currently, HyDEFS supports the following three types of velocity functions; cf. Fig. 2.

• The piecewise linear function v(ρ) = f1(vmax,ρ1,ρ2,vmin ; ρ) is defined by two lim-

iting velocities, vmax and vmin, and two thresholds for the density, ρ1 and ρ2. If the

current density on the edge is small, ρ ≤ ρ1, then the group can move fast, v = vmax,

whereas high density (ρ > ρ2) leads to slow movement, v = vmin. For ρ1 < ρ ≤ ρ2,

the velocity v drops linearly from vmax to vmin. Note that this includes density-

independent velocities (vmax = vmin), as well as step functions (ρ1 = ρ2).

• f2(vmin,ρ1,ρ2,vmax ; ρ) is a “smooth” version of f1 with vmax and vmin denoting

the asymptotic limits and ρ1 and ρ2 indicating where 10 and 90%, resp., of the

difference vmax − vmin are reached.

• f3(vmax,ρ1,ρ2 ; ρ) describes a velocity that is inversely proportional to the density,

with constant value vmax for ρ ≤ ρ1 and dropping to vmax/2 at ρ2.
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Figure 2 Functions for the density-dependent velocity (top left: f1; top right: f2; bottom left: f3) for

different settings of the parameters. The bottom right picture shows the “throughput” of a length-

1 edge with velocity function f3(1,w,2w) for different values of w. Here, 100 persons are

traversing the edge in 1000 “groups” of 0.1 persons, and they are arriving at the start point

within 1 second (with 1ms between two groups; crosses) or within 10s (intervals 10ms; solid

lines).

Note that a length-1 edge with velocity f3(1,c,2 · c) roughly corresponds to a con-

striction allowing c persons per second to pass, almost independently from the num-

ber of persons waiting before the constriction; cf. bottom right picture in Fig. 2.

HyDEFS also includes components for pre- and postprocessing. In particular, the de-

scription of the network may contain parameters that can be varied automatically between

subsequent runs of the simulation. This feature is used heavily in the following sections.

3 A simple scenario

We consider a very simple evacuation scenario in a continuous setting. We assume that,

over a time interval [0,T ], a constant flow of N persons in total (N/T persons per second)

arrives at a given point. They have to traverse a room and leave it by one of two doors,

which are at a distance of 10 meters and 20 m from the point of arrival. Having passed
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Figure 3 Sketch of the simple scenario (left) and corresponding network model (right).

the door, the exit point is reached by another corridor (10 m from door 1, 20 m from

door 2); cf. the sketch in Fig. 3. We assume that, except for the two doors, the corridors

are wide enough and there are no obstacles on the way, so that the persons can move with

a constant velocity of 1 m/s. For the doors we assume a restricted capacity, allowing c1

and c2 persons to pass per second, respectively.

This is modelled by the network also shown in Fig. 3, with Vin = {1} and Vout = {6},

and e3 and e5 representing the doors. According to the above assumptions, the remaining

edges e1, e2, e4, and e6 have lengths 10, 20, 10, and 20, resp., and they all have the same

(constant) velocity function f1(1,1,1,1; ρ) ≡ 1. By contrast, e3 and e5 have length 1

and the velocity functions f3(1,ck,2 ·ck ; ρ). The constant incoming flow is replaced with

discrete events, representing groups of size qin arriving at node 1. In this model, the flow

can split only at node 1, and we assume that a portion of prob(e1) ∈ [0,1] follows the

outgoing edge e1 (heading for door 1), leaving prob(e2) = 1− prob(e1) for the way to

door 2.

In the following we report results for this scenario. We first discuss numerical experi-

ments with the HyDEFS software in Sec. 3.1. For the simple scenario these results also

can be derived analytically. In Sec. 3.2 we do this with the continuous model, assuming

a constant flow entering the network. In Sec. 3.3 a discrete, group-based model is used

instead. We observe that the continuous and the discrete model behave rather similarly

for this scenario and that the HyDEFS results agree well with both.

3.1 Results from simulations with HyDEFS

In all experiments shown in this work, we use T = 10 s, N = 100, qin = 0.1, i.e., the

constant flow is replaced with n = 1000 groups entering the network at times 0, 0.01, . . . ,

9.99 s, and we fix c1 = 1.

Since the number of persons arriving per second at node 1 substantially exceeds the

capacity of each door, it is clear that both doors should be used even if the way via door 2

is much longer, because the waiting time at door 1 is thus reduced. The simulation results

confirm this expectation, indicating that roughly 40% of the persons should use door 2 in
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order to minimize the maximum and average arrival time at node 6, if both doors have

the same capacity c2 = c1 = 1; cf. left picture in Fig. 4. We also expect that more persons

should be sent to door 2 if the latter’s capacity is larger, and again this is confirmed by

a simulation with c2 = 3; cf. right picture in Fig. 4. Indeed, increasing the capacity of

door 2 reduces the optimal maximum and average arrival times, as one might hope.
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Figure 4 Maximum and average arrival times for the simple scenario depending on the distribution of the

flow to edges e1 and e2 for two different capacities of door 2, c2 = 1 (left) and c2 = 3 (right).

The simulation can also be used to optimize the design of the network. Figure 5 shows

the maximum and average arrival times if the capacity of door 2 is varied as well. Note

that the plots from Fig. 4 correspond to the horizontal lines c2 = 1 and c2 = 3 in these

images.

Figure 5 Maximum (left) and average (right) arrival times for the simple scenario depending on the ca-

pacity of door 2 and the distribution of the flow to edges e1 and e2. The ranges (up to 240.59 for

max, 140.47 for avg) have been cut to improve the display of smaller values.

Going one step further, we can determine how much capacity we must provide for

door 2 in order to achieve a desired reduction in the maximum or average arrival time; cf.

Fig. 6.
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Figure 6 Best maximum and average arrival times that can be achieved with a given capacity for door 2,

assuming that prob(e1) is chosen optimally in each case.

3.2 Analysis for the continuous model

Due to the simplicity of the scenario, the above results can also be obtained analytically.

In the continuous setting, with N persons entering the network during the time interval

[0,T ], let pk be the portion of the overall flow passing through door k (p2 = 1− p1), and

let tarr
k (t) denote the time when a flow unit leaves the network if it had entered it at time

t ∈ [0,T ] and taken door k, k = 1,2. Then

tarr
k (t) = t + lenk +delayk(t),

where the three summands represent, respectively, the start of motion, the time for un-

hindered motion with maximum speed v ≡ 1 along path k (i.e., len1 = 10+1+10 = 21,

len2 = 20+ 1+ 20 = 41), and a potential delay at door k. If the door’s capacity can

accomodate the arriving flow,

pk

N

T
≤ ck ⇐⇒ pk ≤

ck T

N
,

then there is no delay: delayk(t) = 0. Otherwise, t · pk
N
T

units of flow have arrived at the

door “before me,” and t · ck of these have already passed, such that “I” am delayed by

delayk(t) =

(

t pk

N

T
− t ck

)

1

ck

= t

(

pk

ck

·
N

T
−1

)

.

Taking both cases together, we obtain

tarr
k (t) = lenk + t max

{

pk

ck

·
N

T
, 1

}

, (1)

and in particular the latest arrival from path k is at time

tmax
k = max

t∈[0,T ]
tarr
k (t) = tarr

k (T ) = lenk +max

{

pk N

ck

, T

}

,
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yielding the overall latest arrival time

tmax = max
{

tmax
1 , tmax

2

}

= max

{

len1 +
p1N

c1
, len1 +T, len2 +

(1− p1)N

c2
, len2 +T

}

.

In our setting (N = 100, T = 10, len1 = 21, len2 = 41, c1 = 1, c2 ∈ [0.5,5]), the second

term len1+T = 31 cannot contribute to the max because the fourth one, len2+T = 51, is

larger. In fact, the latter can also be dropped, because if it is larger than the first one, len2+

T > len1 +
p1N
c1

, then p1 < (len2 − len1 +T ) c1
N
= 0.3, and in this case len2 +

(1−p1)N
c2

>

len2 +
0.7N

5
= 55, i.e., the third term is even larger. As the first (third) term is strictly

monotonically increasing (decreasing) w.r.t. p1, tmax is minimized if

len1 +
p∗1 N

c1
= len2 +

(1− p∗1)N

c2
⇐⇒ p∗1 =

c1

N
·

N +(len2 − len1)c2

c1 + c2
. (2)

In particular, with N = 100, len2 − len1 = 20 and c1 = 1 fixed, for c2 = 1 the optimum

distribution is given by p∗1 = 0.6 with tmax = 81, whereas for c2 = 3 the optimum value

tmax = 61 is achieved with p∗1 = 0.4. Both agree very well with the simulation results in

Fig. 4, as does the dependency “optimum p1 vs. c2” in comparison with the left picture in

Fig. 5.

For the average arrival time

tavg =
1

T

T
∫

0

p1 tarr
1 (t)+(1− p1) tarr

2 (t) dt

we use Eq. 1 to obtain

tavg = p1

(

len1 +
T

2
max

{

p1

c1
·

N

T
, 1

})

+(1− p1)

(

len2 +
T

2
max

{

1− p1

c2
·

N

T
, 1

})

.

In particular, the seemingly quadratic functions in Fig. 4 are only piecewise quadratic on

the three intervals 0 ≤ p1 ≤
c1

N/T
= 0.1, 0.1 ≤ p1 ≤ 1− c2

N/T
= 1−0.1c2, and 1−0.1c2 ≤

p1 ≤ 1. Again, the minimum of the average arrival time is taken when there is delay at

both doors, i.e.,

tavg = p1

(

len1 +
T

2

p1

c1

N

T

)

+(1− p1)

(

len2 +
T

2

1− p1

c2

N

T

)

= len2 − p1(len2 − len1)+ p2
1

N

2c1
+(1− p1)

2 N

2c2
,

and setting dtavg/dp1 = 0 to obtain the minimizer leads again to Eq. 2, i.e., the optimizers

for the maximum and average arrival time coincide. These results also agree very well

with those from the simulation.
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3.3 Analysis for the discrete model

The following analysis shows that a discrete, group-based approach can match the behav-

ior of the continuous model very closely. We consider the case c1 = c2 = 1 (cf. left picture

in Fig. 4).

Let again p1 = prob(e1), len1 = 21, len2 = 41, and for a given value of p1 ∈ [0,1], let

tarr
k (i) denote the arrival time at node 6 for that part of the ith group that takes the path

via edge ek, k = 1,2, and i = 1, . . . ,n with n = 1000. Then, with similar arguments as in

Sec. 3.2 for the delay at the doors,

tarr
1 (i) =

{

i−1
100

+ len1 if p1 ≤ 0.1

len1 +
i−1
10

p1 if p1 ≥ 0.1
,

tarr
2 (i) =

{

i−1
100

+ len2 if p1 ≥ 0.9

len2 +
i−1
10

(1− p1) if p1 ≤ 0.9
.

For any (sufficiently large) fixed number of groups, n, we can now evaluate the maximum

arrival time tmax and the average arrival time tavg at node 6. In the first case, we obtain

tmax = max{tarr
1 (n), tarr

2 (n)}. The minimum of tmax =: tmax(p∗1) w.r.t. p1 is attained when

tarr
1 (n) = tarr

2 (n), i.e., when

len1 +
n−1

10
p∗1 = len2 +

n−1

10
(1− p∗1) ⇐⇒ p∗1 =

1

2
+

100

n−1
.

For n = 1000 this implies that the best possible distribution is obtained for p∗1 ≈ 0.6001,

achieving the smallest possible maximum arrival time of tmax(p∗1) = 80.95.

Assuming again a (sufficiently large) fixed number of groups, n, and setting sn =

∑
n
i=1

i−1
10

= n(n−1)
20

, we can evaluate the average arrival time tavg = tavg(p1) at node 6 for

0.1 ≤ p1 ≤ 0.9 as

tavg(p1) =
1

n

(

p1

n

∑
i=1

(

len1 +
i−1

10
p1

)

+(1− p1)
n

∑
i=1

(

len2 +
i−1

10
(1− p1)

)

)

=
1

n
(p1 (len1 n+ p1 sn)+(1− p1)(len2 n+(1− p1)sn))

=
1

n

(

2sn p2
1 − (20n+2sn) p1 + len2 n+ sn

)

.

Differentiating w.r.t. p1 yields

dtavg(p1)

dp1
=

1

n
(4sn p−20n−2sn)

!
= 0 ⇐⇒ p∗1 =

1

2
+

5n

sn
=

1

2
+

100

n−1
.

Thus, for n = 1000 we obtain p∗1 ≈ 0.6001 and tavg(p∗1)≈ 54.97.

Note that the calculations above are only meaningful if n > 200, i.e., if N > 20. More-

over, we can observe that the optimal distributions p∗1 for minimizing tmax and tavg are

equal for all reasonable values of n.
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Figure 7 Sketch of the more complex scenario (left) and corresponding network model (right).

4 A more complex scenario

The situation changes considerably if, before leaving the scene, all persons have to pass

another corridor, which is susceptible to congestion; cf. the sketch in Fig. 7.

The additional corridor is modelled by a new edge e7 of length 10 leading to the new

exit node 7; cf. Fig. 7, and e7 is equipped with the velocity function f3(1,3,5; ρ), i.e., it

allows movement with maximum velocity v = 1 for densities up to 3, but for ρ = 5 the

velocity drops by one half. Thus, the number of persons leaving the corridor per time unit

is decreasing for higher densities. To allow for a more localized behavior (the velocity of

persons at one end of the edge needs not depend on the density at the opposite end), the

edge is subdivided into five sub-edges of length 2, all sharing the above velocity function.

These sub-edges will be referred to as e7A (adjacent to node 6) to e7E in the following.

The maximum and average arrival times for this scenario are shown in Fig. 8. The

simulation indicates that—in contrast to Sec. 3—increasing the capacity of door 2 beyond

a certain bound may lead to higher (maximum and average) arrival times. That is, even

if the persons can reach node 6 earlier, this leads to a higher density in the final corridor,

which in turn will slow down the movement there.

It is noteworthy that in this scenario, the approximate optimizers for the maximum

arrival time (c2 = 2.81, p1 = 0.218, with tmax ≈ 78.72) and for the average arrival time

(c2 = 1.86, p1 = 0.470, with tavg ≈ 59.87) are different. They correspond to the bottom

left and top right, resp., blue regions in the left picture of Fig. 8. Choosing the “wrong”

optimizer does, however, not too much harm in this case: At the max-optimizer, we have

tavg ≈ 59.91, whereas tmax ≈ 79.33 at the avg-optimizer.

More details of the flow can be seen in Fig. 9, which shows the density on selected

edges over time for three different configurations from a vertical line through the max-

optimizer, i.e., p1 = 0.218, with c2 being smaller (top left), equal to (top right), and larger
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Figure 8 Maximum (left) and average (right) arrival times for the more complex scenario depending on

the capacity of door 2 and the distribution of the flow to edges e1 and e2. The ranges (up to

250.59 for max, 150.47 for avg) have been cut to improve the display of smaller values.

than (bottom), resp., the optimal value c2 = 2.81. In all three cases, the flow arrives at

edge e4 after len(e1) + len(e3) = 11 seconds, and since a total of p1N = 21.8 persons

come through door 1, it continues for 21.8 seconds, and the edge becomes empty after

another len(e4) = 10 seconds. A similar behavior can be observed for e6, the specific

times depending on the respective capacity of door 2. On e7, the different behavior shows

mainly at the beginning of the edge, e7A. The other sub-edges feature a a very similar

flow, with a delay of len(e7x) = 2 seconds from one sub-edge to the next. In the case

c2 = 3 too much flow arrives at e7A, leading to reduced velocity on this sub-edge. The

flow leaving the sub-edge is small enough such that the later sub-edges do not suffer from

the same problem.

5 Conclusions and future work

Routing decisions of users significantly influence the effectiveness of a pedestrian infra-

structure. However, the modelling of path selection is due to uncertainty and can even in

evacuation scenarios not be completely controlled. HyDEFS simulates pedestrian move-

ment with a macroscopic event-driven model with respect to varying routing decisions

and constraints. We consider in this article rather simple scenarios such that the simula-

tion results can be verified analytically. On the small network (in Section 3) the discrete

and the time-continuous calculation yield almost the same optimal solutions (minimizing

tavg and tmax, respectively) as the simulation with HyDEFS.

Interestingly, in the first scenario (Section 3) with c1 = c2 = 1, the optimal distributions

of flow (with respect to average tavg and maximal arrival time tmax) converge to p∗ = 1
2
,

when the number of groups n goes to infinity (with N = n/10 and T = n/100). This effect

can be observed analogously in the discrete and the continuous calculation, as well as in

the simulation. In the limit n → ∞ this effect relates to the transition of a time dynamic
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Figure 9 Density of the edges e4, e6 leading to node 6 and of the sub-edges e7A−E leading from node 6

to node 7 for the optimal value p1 = 0.218 and different values of c2: c2 = 2.00 (smaller than

optimal, top left), c2 = 2.81 (optimal, top right), c2 = 3.00 (larger than optimal, bottom; note

the different density range).

flow to a steady-state maximum flow problem, whose optimal solution is determined by

the capacities of the paths (in this case the doors) and is independent of the path lengths.

In the more complex scenario (Section 4) the optimal distribution of pedestrians with

respect to average and maximal arrival time do no longer coincide. In larger networks we

expect that these optimal solutions will differ significantly, which asks for a multiobjective

analysis of network designs. Additionally, other objective functions, like e.g., earliest

arrival flow [31] and other functional dependencies of velocity and density should be

evaluated on larger networks in future research using HyDEFS.

Compared to the analyses of the phase diagram of the network presented in [25, 26],

the approach introduced in this work represents a simplification. This is associated with

a lower computational effort but also with a less accurate representation of the dynamics

of the flows on the network. Whether and for which systems this simplification reflects

the essential dynamics has to be investigated in future work. In addition, it could be

investigated whether a coupling of models with different levels of detail allows to roughly
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model the main parts of the network and to limit complex calculations with fine models

to only a few edges and nodes of the network.
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Hochschule Zürich (2007)

[4] Chraibi, M., Tordeux, A., Schadschneider, A., Seyfried, A.: Modelling of Pedestrian

and Evacuation Dynamics, pp. 1–22. Springer, Berlin, Heidelberg (2018)

[5] Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.

1(1), 269–271 (1959). doi:10.1007/BF01386390

[6] Kretz, T.: Pedestrian traffic: On the quickest path. Journal of

Statistical Mechanics: Theory and Experiment P03012 (2009).

doi:10.1088/1742-5468/2009/03/P03012

[7] Kemloh Wagoum, A.U., Seyfried, A., Holl, S.: Modeling the dynamic route choice

of pedestrians to assess the criticality of building evacuation. Advances in Complex

Systems 15(3) (2012). doi:10.1142/S0219525912500294

[8] Kneidl, A.: Methoden zur Abbildung menschlichen Navigationsverhaltens bei
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