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A B S T R A C T

Local cortical architecture is highly heritable and distinct genes are associated with specific cortical regions. Total surface area has been shown to be genetically

correlated with complex cognitive capacities, suggesting cortical brain structure is a viable endophenotype linking genes to behavior. However, to what extend local

brain structure has a genetic association with cognitive and emotional functioning is incompletely understood. Here, we study the genetic correlation between

personality traits and local cortical structure in a large-scale twin sample (Human Connectome Project, n ¼ 1102, 22-37y) and we evaluated whether observed as-

sociations reflect generalizable relationships between personality and local brain structure two independent age-matched samples (Brain Genomics Superstructure

Project: n ¼ 925, age ¼ 19-35y, enhanced Nathan Kline Institute dataset: n ¼ 209, age: 19-39y). We found a genetic overlap between personality traits and local

cortical structure in 10 of 18 observed phenotypic associations in predominantly frontal cortices. However, we only observed evidence in favor of replication for the

negative association between surface area in medial prefrontal cortex and Neuroticism in both replication samples. Quantitative functional decoding indicated this

region is implicated in emotional and socio-cognitive functional processes. In sum, our observations suggest that associations between local brain structure and

personality are, in part, under genetic control. However, associations are weak and only the relation between frontal surface area and Neuroticism was consistently

observed across three independent samples of young adults.

1. Introduction

The local macro-anatomical structure of the cerebral cortex is largely

heritable, and has a highly polygenetic architecture (Grasby et al., 2020;

Panizzon et al., 2009; Strike et al., 2019; Winkler et al., 2010). Recently,

it has been shown that common genetic variants that influence surface

area also affect various behavioral traits, suggesting that brain structure

is an essential endophenotype linking genes and behavior (Grasby et al.,

2020). However, to what extend the correlation between local cortical

structure on the one hand and cognitive and emotional functioning on

the other is driven by shared genetic factors is incompletely understood.

One of the most broadly used summaries of an individual’s charac-

teristic patterns of behavior, thought, and emotions is personality

(Funder, 2001). Behavioral science establishes personality structure by

parcellating the individual variability in goals, cognition, and emotion

into independent components (Mischel, 2004). A widely used personality

taxonomy is the Big Five Personality inventory (John and Srivastava,

1999; McCrae and Costa, 1997; Saucier and Srivastava, 2015). The

Five-factor personality structure derives five orthogonal dimensions or

traits of Agreeableness, Conscientiousness, Extraversion, Neuroticism,

and Openness (John et al., 2008; Saucier and Srivastava, 2015). Per-

sonality traits have been related to the quality of social relationships

(Asendorpf and Wilpers, 1998), job performance (Rothmann and Coet-

zer, 2003), risk for mental disorders (Miller et al., 2001; Trull, 2013),

general health and wellbeing, and reproductive success (Alvergne et al.,

2010; Strickhouser et al., 2017).

Personality has both stable and malleable features (Damian et al.,

2019; Harris et al., 2016; Penke and Jokela, 2016) and has been found

heritable with approximately 40% of the variance attributable to additive

genetic factors (Bouchard, 1994; Bouchard and Loehlin, 2001; Bouchard
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and McGue, 2003; Jang et al., 1996; Loehlin et al., 1998; Vukasovic and

Bratko, 2015). Evolutionary causes for variability in personality traits

have been suggested to be due to balancing selection, where selection

pressures in different directions affect the same traits enabling adapta-

tion to changing environmental demands (Penke and Jokela, 2016).

Indeed, genome-wide association studies (GWAS) have reported a large

number of genetic variants associated with personality traits with each

contributing to the heritability of personality (Genetics of Personality

Consortium, 2015; de Moor et al., 2012; Lo et al., 2017; van den Berg

et al., 2016; Verweij et al., 2012).

The biological basis of personality in humans has also been studied in

relation to macroscale brain structure and function using magnetic

resonance imaging (MRI) (Bjornebekk et al., 2013; DeYoung et al., 2010;

Dubois et al., 2018; Ferschmann et al., 2018; Kong et al., 2019; Nostro

et al., 2017; Riccelli et al., 2017; Wu et al., 2019). Various studies have

reported a phenotypic relationship between local brain structure and

personality traits (Bjornebekk et al., 2013; DeYoung et al., 2010; Gray

et al., 2019; Nostro et al., 2017; Riccelli et al., 2017). Using the Human

Connectome Project, young adult (HCP) sample, including monozygotic

and dizygotic twins, Owens and colleagues (Owens et al., 2019) report

significant phenotypic relationships between personality traits and

various markers of cortical structure. For example, Owens and colleagues

observed associations between Agreeableness, Conscientiousness,

Neuroticism, and Openness with morphometry in prefrontal areas.

However findings on the relationship between personality traits and local

brain structure have been inconsistent, for instance, Avinun and col-

leagues failed to observe significant relations between personality and

various markers of brain structure using the largest sample to date

(Avinun et al. biorXiv). In line with this report, Kharabian et al. have

recently shown that, in general, relationships between local brain

structure and psychometric variables are not robust and highly depen-

dent on sample and effect size (Kharabian Masouleh et al. biorXiv;

KharabianMasouleh, 2019). At the same time, it has recently been shown

that traits such as neuroticism, general cognitive function, educational

attainment, and depressive symptoms show a genetic correlation with

total surface area, suggesting brain structure is a key phenotype reflecting

individual differences in behavior (Grasby et al., 2020).

Taken together contemporary theory suggests that (a) individual

variation in both local brain structure and personality can be, in part,

attributed to genetic effects (b) brain structure is a viable endophenotype

linking genes and behavior (c) personality relates to macro-scale brain

structure and function, but local relationships are weak and vary as a

function of sample and effect size. However, whether regional brain

structure and personality have a shared genetic basis remains unclear. To

answer our research question, we studied the relationship between the

Big Five personality traits and local cortical thickness and surface area.

We captured variations in brain morphometry using an atlas-based

approach, dividing the cortex in 200 functionally-defined parcels

(Eickhoff et al., 2018; Schaefer et al., 2018). We studied three indepen-

dent samples of young adults, the HCP (n ¼ 1102), Brain Genomics Su-

perstructure Project (GSP, n ¼ 925) and enhanced Nathan Kline Institute

dataset (eNKI, n ¼ 209). The HCP sample is unique in that it provided us

with high quality neuroimaging and personality trait (NEO-FFI) data in a

large number of twins, siblings, and unrelated individuals, enabling us to

compute genetic correlation between personality and local brain struc-

ture. Analysis of heritability and genetic correlation was performed using

maximum likelihood variance-decomposition methods using Sequential

Oligogenic Linkage Analysis Routines (www.solar-eclipse-genetics.org;

Solar Eclipse 8.4.0.). Second, to assess whether observed associations

between personality and local brain structure in the HCP sample reflect

generalizable relationships between personality and local brain struc-

ture, we selected two samples (GSP (n ¼ 925) and eNKI (n ¼ 209)) of

unrelated individuals between 18 and 40 years of age in which we

studied whether personality-brain relationships observed in the HCP

sample would replicate in two independent samples. Last, we performed

functional decoding to further evaluate the functional mechanisms

underlying brain regions robustly associated with personality.

2. Materials and methods

2.1. HCP sample

2.1.1. Participants and study design

For our analysis we used the publicly available data from the HCP

S1200 release (http://www.humanconnectome.org/), which comprised

data from 1206 individuals (656 females), 298 MZ twins, 188 DZ twins,

and 720 singletons, with mean age 28.8 years (SD ¼ 3.7, min-max ¼

22–37). We included individuals for whom the scans and data had been

released (humanconnectome.org) after passing the HCP quality control

and assurance standards (Marcus et al., 2013). The full set of inclusion and

exclusion criteria are described elsewhere (Glasser et al., 2013; Van Essen

et al., 2013). In short, the primary participant pool comes from healthy

individuals born in Missouri to families that include twins, based on data

from the Missouri Department of Health and Senior Services Bureau of

Vital Records. Additional recruiting efforts were used to ensure partici-

pants broadly reflect ethnic and racial composition of the U.S. population.

Healthy is broadly defined, in order to gain a sample generally represen-

tative of the population at large. Sibships with individuals having severe

neurodevelopmental disorders (e.g., autism), documented neuropsychi-

atric disorders (e.g. schizophrenia or depression) or neurologic disorders

(e.g. Parkinson’s disease) are excluded, as well as individuals with dia-

betes or high blood pressure. Twins born prior 34 weeks of gestation and

non-twins born prior 37 weeks of gestation are excluded as well. After

removing individuals with missing structural imaging, incorrect seg-

mentations, or behavioral data our sample consisted of 1102 individuals

(including 285 MZ-twins and 169 DZ-twins) with mean age of 28.8 years

(SD ¼ 3.7, min-max ¼ 22–37). See further Table 1.

2.1.2. Structural imaging acquisition and processing

MRI protocols of the HCP are previously described (Glasser et al.,

2013; Van Essen et al., 2013). The pipeline used to obtain the

Freesurfer-segmentation is described in detail in a previous article

(Glasser et al., 2013) and is recommended for the HCP-data. In short, the

pre-processing steps included co-registration of T1 and T2 scans, B1 (bias

field) correction, and segmentation and surface reconstruction to esti-

mate cortical thickness. The HCP structural pipelines use Freesurfer 5.1

software (http://surfer.nmr.mgh.harvard.edu/) (Dale et al., 1999; Fischl,

2013; Fischl and Dale, 2000; Fischl et al., 1999) plus a series of

customized steps that combine information from T1w as well as T2w

scans for more accurate white and pial surfaces (Glasser et al., 2013). The

HCP dataset contains high quality imaging data which has been pre-

processed in FreeSurfer by independent researchers (Glasser et al., 2013;

Marcus et al., 2013). To evaluate the quality of segmentations in our

parcellation approach, S.L.V. visually inspected the parcel-values pro-

jected on the cortical surface for inaccuracies, and individuals whose

regional cortical thickness or surface area showed decreased correspon-

dence (r < 0.8) to the mean pattern of the respective measure were

excluded (n ¼ 4).

Table 1

Behavioral characteristics of the HCP sample. Behavioral characteristics for

gender, age, intelligence as well as the NEO-FFI scores in the HCP sample.

Measure n mean � SD (min-max)

Males/Females 504/598 –

Age 1102 28.8 � 3.7 (22–37)

Intelligence (Composite score) 1085 121.9 � 14.6 (84.6–153.4)

Agreeableness 1102 33.5 � 5.8 (10–48)

Conscientiousness 1102 34.5 � 5.9 (11–48)

Extraversion 1102 30.7 � 6 (10–47)

Neuroticism 1102 16.6 � 7.3 (0–43)

Openness 1102 28.3 � 6.2 (10–47)
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2.1.3. Five factor model of personality

The Big Five personality traits were assessed using the NEO-Five-

Factors-Inventory (NEO-FFI)(McCrae and Costa, 2004). The NEO-FFI is

composed of a subset of 60-items extracted from the full-length 240-item

NEO-PI-R. For each item, participants reported their level of agreement

on a 5-point Likert scale, from strongly disagree to strongly agree. The

NEO instruments have been previously validated in USA and several

other countries (McCrae and Terracciano, 2005). See further Table 1.

As a proxy for IQ we used the NIH Toolbox Cognition (Weintraub

et al., 2013), ‘total composite score’. The Cognitive Function Composite

score is derived by averaging the normalized scores of each of the Fluid

and Crystallized cognition measures, then deriving scale scores based on

this new distribution. Higher scores indicate higher levels of cognitive

functioning. Participant score is normed to those in the entire NIH

Toolbox Normative Sample (18 and older), regardless of age or any other

variable, where a score of 100 indicates performance that was at the

national average and a score of 115 or 85, indicates performance 1 SD

above or below the national average. See further Table 1.

2.2. GSP sample

2.2.1. Participants and study design

To evaluate the cross-sample reproducibility of observations we

additionally investigated the association between personality and local

cortical brain structure in the Brain Genomics Superstruct Project (GSP)

(Holmes et al., 2015). In short, between 2008 and 2012 young adults

(ages 18 to 35) with normal or corrected-to-normal vision were recruited

from the Boston community to participate in the GSP. The 1570 in-

dividuals included in the data release (Holmes et al., 2015) were selected

from a larger databased of individuals who participated in the ongoing

GSP data collection initiative. Participants included well-educated in-

dividuals with relatively high IQs (many of the college age students are

from local colleges). Participants provided written informed consent in

accordance with guidelines established by the Partners Health Care

Institutional Review Board and the Harvard University Committee on the

Use of Human Subjects in Research (See Supplementary Appendix A in

(Holmes et al., 2015)).

2.2.2. Structural imaging acquisition and processing

All imaging data were collected on matched 3T Tim Trio scanners

(Siemens Healthcare, Erlangen, Germany) at Harvard University and

Massachusetts General Hospital using the vendor-supplied 12-channel

phased-array head coil. Structural data included a high-resolution (1.2

mm isotropic) multi-echo T1-weighted magnetization-prepared gradient-

echo image (multi-echoMPRAGE, see further (Holmes et al., 2015):). The

low participant burden resulting from the use of multi-echo MPRAGE

anatomical scans makes this sequence well suited for high-throughput

studies. The morphometric features derived through conventional

6-min 1 mm MPRAGE and the 2-min 1.2 mm multi-echo MPRAGE are

highly consistent (r2>0.9 for most structures) suggesting that rapid

acquisition multi-echo MPRAGE can be used for many purposes in place

of longer anatomical scans without degradation of the quantitative

morphometric estimates. All T1 scans pre-processed using the Freesurfer

software library (http://surfer.nmr.mgh.harvard.edu/) version 6.0.0

(Dale et al., 1999; Fischl, 2013; Fischl and Dale, 2000; Fischl et al., 1999).

Next, the individual cortical thickness and surface area maps were

standardized to fsaverage5 for further analysis. Images in the GSP were

screened for artifacts, acquisition problems, processing errors and

excessive motion before the open release (Holmes et al., 2015) and

participants were processed in FreeSurfer 6.0.0. in a full automated

matter. S.L.V. visually inspected z-scored parcel-values projected on the

cortical surface for inaccuracies to evaluate the quality of segmentations

of our parcellation approach, and individuals whose regional cortical

thickness or surface area showed a decreased correspondence (r< 0.8) to

the mean pattern of the respective measure were excluded (n ¼ 1).

2.2.3. Five factor model of personality

The Big Five personality traits were assessed using the full-length 240-

item Revised NEO Personality Inventory NEO-Five-Factors-Inventory

(NEO-PI-R)(Costa and McCrae, 1992), the full-length 240-item

NEO-PI-R. For each item, participants reported their level of agreement

on a 5-point Likert scale, from strongly disagree to strongly agree. The

NEO instruments have been previously validated in USA and several other

countries (McCrae and Terracciano, 2005). As a proxy for IQ we used the

estimated IQ derived through the Oklahoma Premorbid Intelligence Es-

timate–3 (OPIE3) formula (Schoenberg et al., 2002). Reported values are

in integers and binned. It is of note that distribution of IQ values is posi-

tively skewed relative to the general population and thatmanypersonality

traits, including negative affect and Neuroticism were observed to have

distribution that would be expected of a clinically-screened pop-

ulation-based sample (Holmes et al., 2015). See further Table 2.

2.3. eNKI sample

2.3.1. Participants and study design

To evaluate the cross-sample reproducibility of observations we

additionally investigated correspondence between personality and

cortical brain structure in the eNKI where we selected adults between 18

and 40 years of age to match the age-range of the HCP and GSP samples.

The sample was made available by the Nathan-Kline Institute (NKY, NY,

USA), as part of the ‘enhanced NKI-Rockland sample’ (https://www.nc

bi.nlm.nih.gov/pmc/articles/PMC3472598/). In short, eNKI was

designed to yield a community-ascertained, lifespan sample in which age,

ethnicity, and socioeconomic status are representative of Rockland

County, New York, U.S.A. ZIP-code based recruitment and enrollments

efforts were being used to avoid over-representation of any portion of the

community. Participants below 6 years were excluded to balance data

losses with scientific yield, as well as participants above the age of 85, as

chronic illness was observed to dramatically increase after this age. All

approvals regarding human subjects’ studies were sought following NKI

procedures. Scans were acquired from the International Neuroimaging

Data Sharing Initiative (INDI) online database http://fcon_1000.project

s.nitrc.org/indi/enhanced/studies.html. For our phenotypic analyses,

we selected individuals with complete personality and imaging data

within the age-range of 18–40 years to match the age-range of the HCP

and GSP samples. Our sample consisted of 209 (121 females) individuals

with mean age of 26.0 years (SD ¼ 6.1, min-max ¼ 18–39). Please see

Table 3 for demographic characteristics.

2.3.2. Structural imaging acquisition and processing

3D magnetization-prepared rapid gradient-echo imaging (3D MP-

RAGE) structural scans(Mugler and Brookeman, 1990) were acquired

using a 3.0 T S Trio scanner with TR¼ 2500 ms, TE¼ 3.5 ms, Bandwidth

¼ 190 Hz/Px, field of view¼ 256� 256 mm, flip angle¼ 8�, voxel size¼

1.0 � 1.0 � 1.0 mm. More details on image acquisition are available at

http://fcon_1000.projects.nitrc.org/indi/enhanced/studies.html. All T1

scans were pre-processed using the Freesurfer software library (http:

//surfer.nmr.mgh.harvard.edu/) version 6.0.0 (Dale et al., 1999;

Fischl, 2013; Fischl and Dale, 2000; Fischl et al., 1999) to compute

Table 2

Behavioral characteristics of the GSP sample. Behavioral characteristics for

gender, age, intelligence as well as the NEO-FFI scores in the GSP sample.

Measure n mean � SD (min-max)

Males/Females 535/390 –

Age 925 21.6 � 3.9 (19–35)

Estimated IQ 891 108.7 � 8.1 (77–129)

Agreeableness 925 32.0 � 6.6 (9–47)

Conscientiousness 925 31.7 � 7.2 (8–48)

Extraversion 925 30.7 � 6.5 (9–48)

Neuroticism 925 20.3 � 8.8 (0–48)

Openness 925 31.6 � 6.1 (14–47)
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cortical thickness and surface area. Next, the individual cortical thickness

and surface area maps were standardized to fsaverage5 for further

analysis. We used a subsample of young adults who had with FreeSurfer

segmentations available. S.L.V. visually inspected z-scored parcel-values

projected on the cortical surface for inaccuracies to evaluate the quality

of segmentations of our parcellation approach. Individuals whose

regional cortical thickness or surface area showed a decreased corre-

spondence (r < 0.8) to the mean pattern of the respective measure were

excluded (n ¼ 1).

2.3.3. Five factor model of personality

The Big Five personality traits were assessed using the NEO-

FFI3(McCrae and Costa, 2004; McCrae and Terracciano, 2005).

For an assessment of intelligence we used the Wechsler Abbreviated

Scale of Intelligence (WASI-II)(Wechsler, 1999), full scale IQ. The WASI

is a general intelligence, or IQ test designed to assess specific and overall

cognitive capabilities and is individually administered to children, ado-

lescents and adults (ages 6–89). It is a battery of four subtests: Vocabulary

(31-item), Block Design (13-item), Similarities (24-item) and Matrix

Reasoning (30-item). In addition to assessing general, or Full Scale, in-

telligence, the WASI is also designed to provide estimates of Verbal and

Performance intelligence consistent with other Wechsler tests. Specif-

ically, the four subtests comprise the full scale and yield the Full Scale IQ

(FSIQ-4), see further Table 3.

2.3.4. Parcellation approach

In all three samples, we used a parcellation scheme (Schaefer et al.,

2018) based on the combination of a local gradient approach and a global

similarity approach using gradient-weighted Markov Random models.

The parcellation has been extensively evaluated with regards to stability

and convergence with histological mapping and alternative parcella-

tions. In the context of the current study, we focus on the granularity of

200 parcels, as averaging will improve signal-to-noise ratio. In order to

improve signal-to-noise ratio and to accelerate analysis speed, we opted

to average unsmoothed structural data within each parcel. Thus, cortical

thickness of each ROI was estimated as the trimmed mean (10 percent

trim) and surface area as the sum of area within an ROI.

2.3.5. Phenotypic correlation analysis

As in previous structural MRI analyses (Bernhardt et al., 2014; Valk

et al., 2016a, 2017), we used SurfStat for Matlab [R2017a, The Math-

works, Natick, MA](Worsley et al., 2009b). Phenotypic correlation ana-

lyses between personality traits and local brain structure were carried out

per parcel, using a 200 parcel-parcellation scheme (Schaefer et al., 2018)

on surface area and cortical thickness. We controlled for age, sex, age �

sex interaction, age2, age2 � sex interaction, as well as global thickness

effects when investigating cortical thickness and intracranial volume

when assessing surface area in order to evaluate associations between

personality and local structure independent from global factors andmake

thickness estimates more comparable across sites and FreeSurfer versions

(Kharabian Masouleh et al., 2020). Results were corrected for multiple

comparisons using Benjamini-Hochberg FDR (Benjamini and Hochberg,

1995) at whole-brain analysis, where we corrected for number of analysis

within the current step and report FDR thresholds. When investigating

personality or in post-hoc brain analysis, we corrected for number of

analysis x ROIs. Post-hoc we also controlled for a proxy for intelligence,

total cognitive score (Weintraub et al., 2013). We displayed significant

(FDRq<0.05) findings on the brain surface.

2.3.6. Heritability and genetic correlation analysis

To investigate the heritability and genetic correlation of brain struc-

ture and personality traits, we analyzed 200 parcels of cortical thickness

and surface area, as well as personality trait score of each subject in a

twin-based heritability analysis. As in previous studies (Glahn et al.,

2010), the quantitative genetic analyses were conducted using Sequen-

tial Oligogenic Linkage Analysis Routines (SOLAR) (Almasy and Blan-

gero, 1998). SOLAR uses maximum likelihood variance-decomposition

methods to determine the relative importance of familial and environ-

mental influences on a phenotype by modeling the covariance among

family members as a function of genetic proximity. This approach can

handle pedigrees of arbitrary size and complexity and thus, is optimally

efficient with regard to extracting maximal genetic information. To

ensure that our traits, behavioral as well as of brain structure, were

conform to the assumptions of normality, an inverse normal trans-

formation was applied for all behavioral and neuroimaging traits (Glahn

et al., 2010).

Heritability (h2) represents the portion of the phenotypic variance

(σ2p) accounted for by the total additive genetic variance (σ2g), i.e., h
2
¼

σ
2
g/σ

2
p. Phenotypes exhibiting stronger covariances between genetically

more similar individuals than between genetically less similar in-

dividuals have higher heritability. Heritability analyses were conducted

with simultaneous estimation for the effects of potential covariates. For

heritability and genetic correlation analysis we included the same

covariates as in our phenotypic correlation analysis including age, sex,

age � sex interaction, age2, age2 � sex interaction. Post-hoc we also

controlled for a proxy for intelligence, total cognitive score (Weintraub

et al., 2013). When investigating cortical thickness, we additionally

controlled for global thickness effects (mean cortical thickness) and in

case of surface area we controlled for intracranial volume.

To determine if variations in personality and brain structure were

influenced by the same genetic factors, genetic correlation analyses were

conducted. More formally, bivariate polygenic analyses were performed

to estimate genetic (ρg) and environmental (ρe) correlations, based on the

phenotypic correlation (ρp), between brain structure and personality

with the following formula: ρp ¼ ρg√(h21h
2
2) þ ρe√[(1 � h21)(1 � h22)],

where h21 and h22 are the heritability’s of the parcel-based cortical

thickness and the various behavioral traits. The significance of these

correlations was tested by comparing the log likelihood for two restricted

models (with either ρg or ρe constrained to be equal to 0) against the log

likelihood for the model in which these parameters were estimated. A

significant genetic correlation (corrected for multiple comparisons using

Benjamin-Hochberg FDR (Benjamini and Hochberg, 1995)) is evidence

suggesting that (a proportion of) both phenotypes are influenced by a

gene or set of genes (Almasy et al., 1997).

To compute the contribution of genetic effects relative to the

phenotypic correlation, we computed the contribution of the genetic path

to the phenotypic correlation (√ h21 � ρg �√ h22) (ρphg) divided by the

phenotypic correlation. For the relative contribution of environmental

correlation to the phenotypic correlation we computed (√ 1-h21 � ρe �

√ 1-h22) (ρphe) divided by the phenotypic correlation (Zheng et al.,

2019).

2.3.7. Bayes factors of replication

To compare the evidence that the personality-local brain structure

could be replicated in two independent samples (H1, replication, and H0,

no replication), we additionally quantified personality-brain associations

within each ROI, using Bayes factors (Verhagen and Wagenmakers,

2014). In line with previous work of our group (Kharabian Masouleh

et al. biorXiv; Kharabian Masouleh, 2019) Bayes factors (BF) were

Table 3

Behavioral characteristics of the eNKI sample. Behavioral characteristics for

gender, age, intelligence as well as the NEO-FFI scores in the eNKI sample.

Measure n mean � SD (min-max)

Males/Females 121/88 –

Age 209 26.0 � 6.1 (18–39)

Intelligence (WASI) 209 100.3 � 12.3 (69–135)

Agreeableness 209 33.6 � 6.1 (18–48)

Conscientiousness 209 33.9 � 7.3 (13–48)

Extraversion 209 30.5 � 6.3 (7–44)

Neuroticism 209 19.7 � 8.1(2–42)

Openness 209 33.0 � 6.2 (12–48)
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summarized into four categories. These categories are used to simplify

the interpretation and comparison of replication rates. For example, a

BF01 lower than 1/3 shows that the data is three times or more likely to

have happened under H1 than H0. “Successful” replication is defined as a

replication lower than 1 in both replication samples.

2.3.8. Functional decoding

Parcel that were significantly replicated in at least one sample were

functionally characterized using the Behavioral Domain meta-data from

the BrainMap database (http://www.brainmap.org(Laird et al., 2011;

Laird et al., 2009)). To do so, volumetric counterparts, delineating the

surface-based parcels in volume space, as provided by Schaefer (Schaefer

et al., 2018) (https://github.com/ThomasYeoLab/CBIG/tree/mast

er/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parc

ellations), were used. In particular, we identified those meta-data labels

(describing the computed contrast [behavioral domain as well as para-

digm]) that were significantly more likely than chance to result in acti-

vation of a given parcel (Fox et al., 2014; Genon et al., 2018; Nostro et al.,

2017). That is, functions were attributed to the parcels by quantitatively

determining which types of experiments are associated with activation in

the respective parcellation region. Significance was established using a

binomial test (q < 0.05, corrected for multiple comparisons using false

discovery rate, FDR).

3. Results

3.1. Association between personality traits and cortical brain structure

To assess the association between personality and macroscale cortical

brain structure we first evaluated distribution of behavioral measures.

Using the Kolmogorov-Smirnov test we found that all personality traits in

the HCP sample (n ¼ 1102 including 285 MZ-twins and 169 DZ-twins)

were conform to normal distributions (KS-score between 0.97 and 1)

(Fig. 1). We observed significant phenotypic correlation between all

personality traits, with the exception of Openness and Neuroticism (r ¼

0.01) (Fig. 1, Supplementary Table 1).

Next, we assessed phenotypic correlation between personality traits

and cortical structure, specifically cortical thickness and surface area.

Distribution of cortical thickness values summarized in 200 functionally

informed parcels (Schaefer et al., 2018) showed highest thickness in

anterior insula, and relatively low values in occipital regions (Fig. 2A).

At the regional level, we observed correlations between Agreeable-

ness, Neuroticism, and Openness and local cortical thickness (Fig. 2B).

Specifically, Agreeableness related negatively to variations in thickness

in left lateral and bilateral medial prefrontal cortex (FDRq<0.05).

Neuroticism related positively to thickness in dorsolateral frontal areas

and left posterior operculum, and negatively to thickness in left posterior

occipital regions (FDRq<0.05). Openness related negatively to thickness

in left ventrolateral cortex, and positively to right temporal pole

(FDRq<0.05). We did not observe significant associations between mean

cortical thickness and personality scores (Table 4).

Total surface area had a negative relation with conscientiousness (t ¼

�2.45, p < 0.005) and a positive association with openness (t ¼ 2.68, p

< 0.002) (Table 4). Regionally, we found a negative relation between

Neuroticism and local surface area in bilateral medial frontal cortex, left

inferior frontal gyrus, left posterior insula, and right temporal pole

(FDRq<0.05).

To test stability of our findings we additionally evaluated the

robustness of phenotypic associations between personality and global

and local brain structure while controlling for total cognitive score and

the other personality traits (Supplementary Materials, Supplementary

Tables 2 and 3). While all local associations remained significant at p <

0.01, strength of associations was generally reduced and few regions

reached FDRq<0.05 significance levels.

3.2. Genetic relationship between personality traits and cortical brain

structure

Subsequently, we sought to evaluate whether the phenotypic corre-

lations observed in the twin-sample were due to shared genetic or

environmental effects on grey matter brain structure and personality

traits. All personality traits were significantly heritable in our current

sample (Fig. 3C, Supplementary Table 4), as were mean cortical thickness

(h2 ¼ 0.85) and total surface area (h2 ¼ 0.93), and we confirmed also

local cortical thickness (h2: mean � std: 0.34 � 0.10) and surface area

(h2: mean � std: 0.41 � 0.13) to be heritable in our parcel-based

approach (Fig. 3A–B, Supplementary Table 5 and 11).

Following, we assessed genetic correlation between personality traits

and cortical structure. We did not observe genetic or environmental as-

sociations between personality and global thickness (Table 5), however,

the phenotypic association between total surface area and conscien-

tiousness was observed to be driven by shared genetic effects (ρg ¼ -0.12,

p < 0.05) whereas the association between openness and total surface

area was driven by environmental effects (ρe ¼ 0.18, p < 0.03).

Last, we evaluated the genetic correlation of regions that showed

phenotypic correlations between personality and local brain structure.

We observed that 10 out of 18 phenotypic correlations showed a genetic

correlation (p� 0.05), and 3 out of 18 phenotypic correlates related to an

environmental correlation (p � 0.05) (Table 6). More specifically, we

found a negative genetic correlation between Agreeableness and bilateral

superior frontal thickness (p < 0.05), a positive genetic correlation be-

tween Neuroticism and right superior and lateral frontal cortex thickness

(p< 0.05) and a positive genetic correlation between right temporal pole

thickness and Openness (p < 0.01). Neuroticism had a negative genetic

correlation between local surface area in left posterior insula, and

bilateral superior frontal cortex, and right medial frontal regions (p <

0.05). See Supplementary Tables (6–10 and 12–16) for genetic and

environmental correlations between personality traits and all parcels.

3.3. Cross-sample reproducibility of the association between personality

trait and local brain structure

In the previous analysis steps, we could show that a) there is a sig-

nificant relationship between local cortical structure and personality

traits in a large-scale twin sample (HCP) and that b) this relationship can

Fig. 1. Distribution of personality traits in the full HCP sample. Distribution

of NEO-FFI personality traits in the HCP dataset, score on x-axis, number of

occurrences on the y-axis, as well as the correlation between NEO-FFI traits in

the HCP sample (A ¼ Agreeableness, C¼Conscientiousness, E ¼ Extraversion,

N¼Neuroticism, O¼Openness).
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Fig. 2. Relation between personality traits and local brain structure in the full HCP sample. A) Mean cortical thickness of each parcel and the distribution of

average cortical thickness across participants; B) Regional associations between personality traits and cortical thickness; C) Average surface area sum per parcel and

the distribution of total surface area across participants; D) Regional associations between surface area and personality traits. Positive associations between local brain

structure and each personality trait are displayed in red and negative associations displayed in blue. Multiple comparisons were accounted for by using FDR corrections

at q < 0.05 correcting for the number of parcels (200) and only significant associations are displayed.

S.L. Valk et al. NeuroImage 220 (2020) 117067

6



be, in part, attributed to shared genetic factors. Following, to study

whether associations between local brain structure and personality traits

are generalizable, we evaluate the phenotypic correlation between per-

sonality traits and cortical phenotypes observed in the HPC sample are

reproducible in two age-matched samples of young adults (GSP and

eNKI). To formalize the level of reproducibility, we computed Bayer

Factors (BF) summarizing the evidence of a successful reproduction

across samples (Verhagen and Wagenmakers, 2014).

We found moderate to anecdotal evidence of replication for only one

personality-brain association in both samples; the relationship between

local surface area in right medial frontal cortex and Neuroticism (GSP: t

¼ �1.55, p < 0.07; BF ¼ 0.82; and eNKI: t ¼ �1.97, p < 0.025; BF ¼

0.17). Various associations between local cortical thickness and person-

ality traits could be reproduced in one of both replication samples

(Table 7). Specifically, in GSP, the association between thickness in right

superior frontal cortex and Agreeableness (t ¼ �1.79, p < 0.05; BF ¼

0.48), and between thickness of right dorsal lateral PFC and Neuroticism

(t ¼ 2.08, p < 0.02; BF ¼ 0.25). In the eNKI sample we observed some

evidence of successful replication of the association between left visual

cortex and Neuroticism (t¼�1.76, p< 0.05; BF¼ 0.25), left dorsolateral

prefrontal thickness and Openness (t ¼ �0.97, p > 0.1, BF ¼ 0.76),

surface area of left sensory-motor cortex (t ¼ �1.11, p > 0.1, BF ¼ 0.60)

and left prefrontal cortex (t ¼ �1.05, p > 0.1, BF ¼ 0.64) and Neuroti-

cism. Global measures of cortical thickness and surface area did not

replicate out of sample, only in case of the positive association between

total surface area and Openness we observed anecdotal evidence of

successful replication in the eNKI sample (t ¼ 1.51, p < 0.1, BF ¼ 0.34)

(Supplementary Table 17).

3.4. Quantitative functional decoding

Last, we performed quantitative functional mapping of the person-

ality – brain relationships for which we observed a) phenotypic and

genetic correlation in the HCP sample b) an association (p < 0.05) in

combination with a BF of <1 in at least one additional sample.

The right medial frontal cortex, where we observed a robust associ-

ation between surface area and Neuroticism, was functionally involved in

various emotional domains, social cognition, and memory, and active in

paradigms involving self-reflection, Theory of Mind, and emotion in-

duction (FDRq<0.05) (Fig. 4).

4. Discussion

Both local brain structure and personality are heritable. Moreover, a

large body of evidence has suggested a relationship between personality

and local brain structure. However, effects are weak and vary as a

function of sample and effect size. In the current study, we used the large

scale and openly available HCP dataset which included monozygotic and

dizygotic twins to study whether there is a genetic correlation between

local brain structure and personality traits. Second, we evaluated the

robustness of personality-brain relationships in two additional age-

matched samples.

First, we identified phenotypic associations between personality traits

and local cortical structure. Associations between personality on the one

hand and cortical thickness and surface area on the other were pre-

dominantly observed in frontal cortices. Performing genetic correlation

analysis, we found that 10 of 18 phenotypic associations could be

explained by shared genetic effects. To evaluate whether observed rela-

tionship between personality traits and local brain structure were

generalizable to other samples, we additionally studied phenotypic

Table 4

Association between personality traits and whole brain summaries of sur-

face area and cortical thickness in the full HCP sample. T-values of the as-

sociation between average cortical thickness and total surface area and

personality traits. ** indicates FDRq<0.05, * indicates p < 0.05.

Average cortical thickness Total surface area

Agreeableness 0.13 0.97

Conscientiousness 0.49 �2.45**

Extraversion 0.83 1.01

Neuroticism 1.95* �2.19*

Openness �1.21 2.68**

Fig. 3. Heritability of local cortical structure and personality traits. A) Heritability of local cortical thickness; B) Heritability of surface area; C) Heritability of

NEO-FFI: A ¼ Agreeableness, C¼Conscientiousness, E ¼ Extraversion, N¼Neuroticism, O¼Openness.

Table 5

Genetic and environmental correlation between personality traits and

whole brain summaries of surface area and cortical thickness. Genetic and

environmental correlations are computed in the HCP sample, and exact p-values

are reported, associations that showed phenotypic correlation at p < 0.05

threshold are in bold.

Global thickness Total surface area

Agreeableness ρe ¼ 0.07, p

¼ ns;

ρg ¼ �0.04,

p ¼ ns

ρe ¼ �0.07,

p ¼ ns;

ρg ¼ 0.08, p

¼ ns

Conscientiousness ρe ¼ �0.02,

p ¼ ns;

ρg ¼ 0.04, p

¼ ns

ρe ¼ 0.04, p

¼ ns;

ρg ¼ -0.12,

p < 0.05

Extraversion ρe ¼ �0.01,

p ¼ ns;

ρg ¼ 0.06, p

¼ ns

ρe ¼ 0.03, p

¼ ns;

ρg ¼ 0.03, p

¼ ns

Neuroticism ρe ¼ 0.11,

p ¼ ns;

ρg ¼ 0.02,

p ¼ ns

ρe ¼ -0.09,

p ¼ ns;

ρg ¼ -0.06,

p ¼ ns

Openness ρe ¼ �0.05,

p ¼ ns;

ρg ¼ -0.02,

p ¼ ns

ρe ¼ 0.18, p

< 0.03;

ρg ¼ 0.08, p

¼ ns
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correlations between personality traits and brain structure in two inde-

pendent age-matched samples of unrelated individuals (GSP and eNKI).

Here, we found that surface area in right medial prefrontal cortex was

robustly associated with Neuroticism across all three samples. In sum,

our findings suggest that part of phenotypic associations between per-

sonality and local brain structure can be attributed to shared genetic

effects in a large-scale twin sample. However, associations were weak

and only the association between surface area in right medial prefrontal

cortex and Neuroticism replicated in two independent samples.

We assessed the genetic basis of the association between personality

and cortical thickness using compressed surface-based MRI data based on

the parcellation scheme of Schaefer et al. (2018). Using compressed

features of structural MRI has been suggested to both improve

signal-to-noise ratio of brain measures (cf. (Eickhoff et al., 2018) and

(Genon et al., 2018)), and optimize analysis scalability. The Schaefer

parcellation is derived using functional MRI data from ~1500 subjects

and integrates local approaches detecting abrupt transitions in functional

connectivity patterns and global approaches that cluster similar func-

tional connectivity patterns (Schaefer et al., 2018). Indeed, a combina-

tion of within-area micro circuitry, proxied by brain morphometry, and

between-area connectivity enables each area to perform a unique set of

computations (Van Essen and Glasser, 2018). Therefore, a parcellation

approach that considers both local and global connectivity might benefit

structural image analysis, as it reduces signal-to-noise both within and

across individuals and makes control for multiple comparisons more

straightforward (Genon et al., 2018). Based on the findings in our study,

we suggest our approach might be a fruitful first exploratory step to

investigate the genetic relation between brain structure and behavior,

and locate mechanisms of interest. Future studies can subsequently verify

these results by exploring more specific genetic mechanisms, as well as

neuroanatomical features.

Though we could establish phenotypic correlations between person-

ality traits and local cortical thickness, associations were weak and

phenotypic associations ranged between t-values of 3.5 and �3.5. In the

HCP dataset phenotypic correlations between predominantly frontal re-

gions and personality traits of Agreeableness, Neuroticism, and Openness

have been previously reported using a non-parcel-based method by

Owens and colleagues (Owens et al., 2019). Frontal cortices are func-

tionally involved in a number of tasks involving higher cognitive func-

tioning, such as executive functioning, memory, metacognition and

social cognition (Amodio and Frith, 2006; Baird et al., 2013; Bludau

et al., 2014; Buckner et al., 2008; Fleming and Dolan, 2012; Valk et al.,

2016a). We additionally observed various relationships between global

measures of surface area and cortical thickness on the one hand and

personality traits on the other. Indeed, we could replicate a recently re-

ported association between total surface area and Neuroticism in

phenotypic correlation analysis (Grasby et al., 2020). However, associ-

ations between global measures of cortical structure and personality were

not consistent across samples.

We extend previously reported phenotypic observations by showing

that these phenotypic relationships between personality and local

cortical structure are driven, in part, by shared additive genetic effects

rather than environmental factors alone. The contribution of genetic ef-

fects on phenotypic correlations is dependent on the heritability of each

of the correlated markers. In our sample, between 30% and 57% (on

Table 6

Genetic and environmental correlation of personality brain associations in the full HCP sample. Genetic and environmental correlations are computed in the HCP

sample, and exact p-values are reported. ** denotes a significant genetic correlation at FDRq<0.05, corrected for the number of ROIs associated with the respective

personality trait within the structural marker. * indicated an association of p < 0.05. The genetic contribution of phenotypic correlation was computed using the

respective heritability of the personality trait and the local parcel as well as their genetic and phenotypic correlation.

Cortical thickness ROI Environmental correlation Genetic correlation Genetic contribution to phenotypic correlation

Agreeableness LH Cont_PFCl_4 ρe �0.12, p < 0.05* ρg �0.09, p ¼ ns 22%

LH Default_PFC_9 ρe �0.05, p ¼ ns ρg �0.21, p < 0.1 72%

LH Default_PFC_11 ρe 0.01, p ¼ ns ρg �0.36, p < 0.005** 100%

LH Default_PFC_13 ρe �0.03, p ¼ ns ρg �0.26, p < 0.05* 84%

RH Default_PFCm_5 ρe 0.03, p ¼ ns ρg �0.33, p < 0.01** 100%

Neuroticism LH Vis_14 ρe �0.07, p ¼ ns ρg �0.20, p < 0.1 64%

LH Default_PFC_9 ρe 0.07, p ¼ ns ρg 0.17, p ¼ ns 63%

RH Cont_PFCl_6 ρe 0.03, p ¼ ns ρg 0.27, p < 0.05* 82%

RH Default_PFCm_5 ρe 0.03, p ¼ ns ρg 0.23, p < 0.05* 83%

Openness LH Cont_PFCl_4 ρe �0.13, p < 0.05* ρg �0.14, p ¼ ns 43%

RH Limbic_TempPole_1 ρe 0.01, p ¼ ns ρg 0.34, p < 0.01** 95%

Surface area

Neuroticism LH SomMot_3 ρe 0.03, p ¼ ns ρg �0.29, p < 0.02* 100%

LH Default_PFC_3 ρe �0.05, p ¼ ns ρg �0.17, p ¼ ns 71%

LH Default_PFC_9 ρe 0.13, p < 0.1 ρg �0.45, p ¼ 0.0002** 100%

LH Default_PFC_13 ρe �0.04, p ¼ ns ρg �0.21, p ¼ ns 75%

RH Default_Temp_1 ρe �0.16, p < 0.02 ρg 0.00, p ¼ ns 1%

RH Default_PFCm_4 ρe 0.01, p ¼ ns ρg �0.25, p < 0.02* 100%

RH Default_PFCm_5 ρe �0.04, p ¼ ns ρg �0.30, p < 0.02* 81%

Table 7

Replication of personality brain associations. Replication in the GSP and

eNKI sample of significant associations between personality and local brain

structure observed in the HCP sample, t-values as well as Bayes Factors (BF) are

reported. If a BF01 is between 0 and 1/3 there is a moderate/strong evidence for

H1 (replication), between 1/3 and 1 anecdotal evidence for H1, between 1 and 3

anecdotal evidence for H0 (no replication) and >3 moderate to strong evidence

of H0. We underlined replications with a correct sign. ** indicates a significant

correlation at FDRq<0.05, * is p < 0.05.

Cortical

thickness

ROI GSP t-value (BF) eNKI t-value

(BF)

Agreeableness LH Cont_PFCl_4 1.26 (>3) �0.01 (>2.5)

LH Default_PFC_9 �0.35 (>3) 0.39 (>3)

LH Default_PFC_11 �0.14 (>3) �0.26 (>2.5)

LH Default_PFC_13 �0.39 (>3) �0.53 (>1)

LH Default_PFCm_5 �1.79*(0.48) 1.40 (>3)

Neuroticism LH Vis_14 1.97* (>3) �1.76* (0.25)

LH Default_PFC_9 0.94 (>3) 0.74 (>1)

RH Cont_PFCl_6 2.08*(0.25) �1.79* (>3)

RH Default_PFCm_5 �0.14 (>3) �0.53 (>3)

Openness LH Cont_PFCl_4 0.72 (>3) �0.97 (0.76)

RH

Limbic_TempPole_1

0.63 (>3) 0.56 (>1)

Surface area

Neuroticism LH SomMot_3 �1.06 (>1.5) �1.11 (0.60)

LH Default_PFC_3 2.30* (>3) 0.36 (>3)

LH Default_PFC_9 �0.18 (>3) �0.39 (>1.5)

LH Default_PFC_13 �0.14 (>3) �1.05 (0.64)

RH Default_Temp_1 1.21 (>3) �0.42 (>1)

RH Default_PFCm_4 �1.55 (0.82) �1.97* (0.17)

RH Default_PFCm_5 0.07 (>3) �0.40 (>2)
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average 42%) of variance in personality traits was explained by additive

genetic factors. This is in line with previous studies using twin and family

samples (Jang et al., 1996) as well as genome-wide approaches (Lo et al.,

2017). A recent meta-analysis (Vukasovic and Bratko, 2015) confirmed

that on average 40% of the variance in personality traits is of genetic

origin. Also, conform with previous studies (Eyler et al., 2012; Kremen

et al., 2010; Panizzon et al., 2009; Strike et al., 2019; Winkler et al.,

2010), we observe heritability of local cortical thickness, with highest

values in primary sensory areas. Heritability patterns followed previously

described patterns with relatively strong genetic influence on cortical

thickness in unimodal cortices, whereas variance in association cortices

is on average less influenced by genetic factors (Eyler et al., 2012; Grasby

et al., 2020; Hofer and al, 2018; Kremen et al., 2010; Panizzon et al.,

2009; Strike et al., 2019; Winkler et al., 2010). Also, local surface area

was heritable, with lowest heritability values in dorsolateral PFC and

temporal-parietal regions (Eyler et al., 2012; Grasby et al., 2020; Hofer

and al, 2018; Kremen et al., 2010; Panizzon et al., 2009; Strike et al.,

2019; Winkler et al., 2010).

Performing genetic correlation analysis, we observed that the

phenotypic correlation between personality and local brain structure in

10 out of 18 regions was driven by genetic factors. These regions were

predominantly located in frontal areas, suggesting a genetic link between

local structure in frontal cortices and personality. Indeed, various studies

have suggested a relationship between personality and the frontal lobe in

humans (DeYoung et al., 2010; Owens et al., 2019; Riccelli et al., 2017)

and in chimpanzees (Latzman et al., 2015). There are various ways in

which a genetic process would affect the relationship between person-

ality and cortical macrostructure and it is likely the observed genetic

correlations between local cortical structure and personality traits in the

HCP sample are be due to mediated pleiotropy (a gene affects A which

affects B). On the one hand, it could be a genetic factor affects greymatter

macrostructure and associated function and, as a consequence, person-

ality. On the other hand, it could be that genetic variation affects brain

function which in turn modulates both macroscale structure as well as

personality, or a genetic mechanism affects an unknown biological factor

which in turn affects personality and brain structure. Recent work using

GWAS and genetic correlation in a large sample of individuals could

found a genetic association between cortical brain structure and various

markers of behavior, providing first evidence of a direct link of genes and

behavior via cortical brain structure (Grasby et al., 2020). Here, Grasby

et al. found evidence that genetic regulatory elements influencing local

surface area and local cortical thickness stem from different devepe-

mental mechanisms. Whereas surface area is associated with genetic

variants active during fetal development, cortical thickness may reflect

genetic processes underlying myelination, branching and pruning. Such

differential mechanistic timing effects on cortical structure might

contribute to the understanding of which biological mechanisms underlie

personality, and further dissociate factors that shape personality across

the life-span.

As various studies have indicated relationships between local brain

structure and psychometric variables are not robust (Avinun et al. bio-

rXiv; Kharabian Masouleh et al. biorXiv; Kharabian Masouleh, 2019), we

further evaluated the robustness of phenotypic associations between

personality and local brain structure in two age-matched samples of

unrelated individuals. Indeed, though most associations did not replicate

across all three samples, the association between medial prefrontal sur-

face area and Neuroticism was observed in all three samples. Functional

decoding indicated that this region is functionally involved in (social)--

cognitive and emotional processing. Additionally, we found anecdotal to

moderate evidence for successful replication of various associations

cortical thickness and personality in either GSP or eNKI sample. How-

ever, given the inconsistency across samples, these replications are

challenging to interpret.

4.1. Limitations and outlook

Moving forward, there are various limitations and challenges in

operationalizing personality that might have resulted in a lack of consis-

tent findings across samples. For example, the sample size of the eNKI

sample was small (n ¼ 209), compared to the HCP and GSP sample,

potentially resulting in a lower power to replicate associations between

personality and cortical brain structure. Thoughour samples all were from

WEIRD (Western, educated, industrialized, rich, and democratic) pop-

ulations (Laajaj et al., 2019), it might be that personality traits probed are

not comparable across samplesdue to challenges to reliablyoperationalize

personality, and that confounding environmental and noise effects vary

across samples. For example, it is possible inconsistent or lack of findings

with regard to macroscale neuroanatomical associations of personality

may be a function of the assessment of personality used (in this case, the

NEO-FFI/NEO-PI-R) rather than a true null or unreliable finding (Avinun

et al biorXiv). The five-factor personality model and the subsequent

operationalizations in instruments such as the NEO are based on a lexical

approach. Though such an approach might be able to dissociate various

personality traits, it is debated whether lexical taxonomy has a direct

Fig. 4. Quantitative functional decoding of consistent associations be-

tween personality and local brain structure. Both forward inference and

reverse inference of activation-domain and paradigm-domain contrasts are re-

ported for the right medial frontal cortex which showed evidence of successful

replication in two samples.

S.L. Valk et al. NeuroImage 220 (2020) 117067

9



relation to neurobiology (Perkins et al., 2020; Yarkoni, 2015). Future

studies might benefit from using personality instruments developed in

concordance with brain structure and function such as Hierarchical Tax-

onomy of Psychopathology (HiTOP) (Perkins et al., 2020).

Second, a review on the neurobiology of personality suggested that

rather than focusing on a one-to-one mapping between personality and

neurobiology, as done in the current study, studies that seek to identify

mechanisms contributing to particular clusters of behaviors might be a

more fruitful approach to capture the neurobiological mechanisms un-

derlying personality traits (Yarkoni, 2015). For example, though brain

structure is a viable endophenotype of personality, correlation between

personality and macro-scale cortical structure is weak. Thus, further

study of the relationship between personality and functional activity and

functional dynamics might further contribute to understanding the bio-

logical basis of personality and other complex traits (Dubois et al., 2018;

Kebets et al., 2019; Kong et al., 2019; Wu et al., 2019).

Third, only 40% of personality variance in the current sample could

attributed to genetic effects. Environment, such as family environment,

peer-groups, and stress have been reported to influence personality

(Hopwood et al., 2011; Nakao et al., 2000), and also local cortical

structure and associated behavior has been reported to change as a

consequence of changing environments in adulthood (Valk et al., 2017).

Though genetic and gene by environment effects are not to be excluded

in this context, is likely such environmental mechanisms further shape

the relation between personality traits and brain structure, above and

beyond direct additive genetic effects. Longitudinal designs might help to

further understand the environmental relationship between personality

and brain structure and function.

Taken together, in the current study we report evidence of a shared

genetic basis of personality traits and local brain structure within the

HCP sample, and a robust association of local surface area in medial

prefrontal regions and Neuroticism across three independent samples. It

is of note that our study on the shared genetic basis of personality and

brain structure was made possible by the open HCP, GSP, and eNKI

neuroimaging repositories. These initiatives offer cognitive neuro-

imaging communities an unparalleled access to large datasets for the

investigation of the brain basis of individual difference. They have also

enabled us to highlight variability across samples and validation exper-

iments to verify stability of our observations. Notably, the use of multiple

datasets enabled us to test robustness of our findings. Given that repli-

cability is essential to understand and evaluate the robustness of brain-

behavior associations, our study illustrates the advantages of open data

to increase understanding of complex traits.
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