000877680 001__ 877680
000877680 005__ 20240711101515.0
000877680 0247_ $$2doi$$a10.1002/er.7448
000877680 0247_ $$2ISSN$$a0363-907X
000877680 0247_ $$2ISSN$$a1099-114X
000877680 0247_ $$2Handle$$a2128/30934
000877680 0247_ $$2WOS$$aWOS:000721030000001
000877680 037__ $$aFZJ-2020-02390
000877680 082__ $$a620
000877680 1001_ $$0P:(DE-HGF)0$$aKöhnen, Clara Sophie$$b0
000877680 245__ $$aThe potential of deep learning to reduce complexity in energy system modeling
000877680 260__ $$aLondon [u.a.]$$bWiley-Intersience$$c2022
000877680 3367_ $$2DRIVER$$aarticle
000877680 3367_ $$2DataCite$$aOutput Types/Journal article
000877680 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648470592_16318
000877680 3367_ $$2BibTeX$$aARTICLE
000877680 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877680 3367_ $$00$$2EndNote$$aJournal Article
000877680 520__ $$aIn order to cope with increasing complexity in energy systems due to rapid changes and uncertain future developments, the evaluation of multiple scenarios is essential for sound scientific system analyses. Hence, efficient modeling approaches and complexity reductions are urgently required. However, there is a lack of scientific analyses going beyond the scope of traditional energy system modeling. For this reason, we investigate the potential of metamodels to reduce the complexity of energy system modeling. In our explorative study, we investigate their potential and limits for applications in the fields of electricity dispatch and design optimization for heating systems. We first select a suitable metamodeling approach by conducting pre-tests on a small scale. Based on this, we selected artificial neural networks due to their good performance compared to other approaches and the multiple possibilities of network topologies and hyperparameter settings. As for the dispatch model, we show that a high accuracy of price replication can be achieved while substantially reducing the runtimes per investigated scenario (from 2 hours on average down to less than 30 seconds). With the design optimization model, we find double-edged results: while we also achieve a substantial reduction of runtime in this case (from ~0.8 hours to less than 30 seconds), the simultaneous forecasting of several interdependent variables proved to be problematic and the accuracy of the metamodel shows to be insufficient in many cases. Overall, we demonstrate that metamodeling is a suitable approach to complemement traditional energy system modeling rather than to replace them: the loss of traceability in (black-box) metamodels indicates the importance of hybrid solutions that combine fundamental models with metamodels.
000877680 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000877680 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1
000877680 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x2
000877680 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000877680 7001_ $$0P:(DE-HGF)0$$aPriesmann, Jan$$b1
000877680 7001_ $$0P:(DE-HGF)0$$aNolting, Lars$$b2
000877680 7001_ $$0P:(DE-Juel1)168451$$aKotzur, Leander$$b3$$ufzj
000877680 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b4$$ufzj
000877680 7001_ $$0P:(DE-HGF)0$$aPraktiknjo, Aaron$$b5$$eCorresponding author
000877680 773__ $$0PERI:(DE-600)1480879-1$$a10.1002/er.7448$$gp. er.7448$$n4$$p4550-4571$$tInternational journal of energy research$$v46$$x0363-907X$$y2022
000877680 8564_ $$uhttps://juser.fz-juelich.de/record/877680/files/Intl%20J%20of%20Energy%20Research%20-%202021%20-%20K%20hnen%20-%20The%20potential%20of%20deep%20learning%20to%20reduce%20complexity%20in%20energy%20system%20modeling.pdf$$yOpenAccess
000877680 909CO $$ooai:juser.fz-juelich.de:877680$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877680 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877680 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877680 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168451$$aForschungszentrum Jülich$$b3$$kFZJ
000877680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b4$$kFZJ
000877680 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
000877680 9130_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000877680 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000877680 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
000877680 9141_ $$y2022
000877680 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877680 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877680 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-03$$wger
000877680 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000877680 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000877680 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J ENERG RES : 2021$$d2022-11-30
000877680 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-30
000877680 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-30
000877680 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-30
000877680 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-30
000877680 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-30
000877680 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-30
000877680 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-30
000877680 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-30
000877680 920__ $$lyes
000877680 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000877680 9801_ $$aFullTexts
000877680 980__ $$ajournal
000877680 980__ $$aVDB
000877680 980__ $$aUNRESTRICTED
000877680 980__ $$aI:(DE-Juel1)IEK-3-20101013
000877680 981__ $$aI:(DE-Juel1)ICE-2-20101013