001     877680
005     20240711101515.0
024 7 _ |a 10.1002/er.7448
|2 doi
024 7 _ |a 0363-907X
|2 ISSN
024 7 _ |a 1099-114X
|2 ISSN
024 7 _ |a 2128/30934
|2 Handle
024 7 _ |a WOS:000721030000001
|2 WOS
037 _ _ |a FZJ-2020-02390
082 _ _ |a 620
100 1 _ |a Köhnen, Clara Sophie
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The potential of deep learning to reduce complexity in energy system modeling
260 _ _ |a London [u.a.]
|c 2022
|b Wiley-Intersience
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1648470592_16318
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In order to cope with increasing complexity in energy systems due to rapid changes and uncertain future developments, the evaluation of multiple scenarios is essential for sound scientific system analyses. Hence, efficient modeling approaches and complexity reductions are urgently required. However, there is a lack of scientific analyses going beyond the scope of traditional energy system modeling. For this reason, we investigate the potential of metamodels to reduce the complexity of energy system modeling. In our explorative study, we investigate their potential and limits for applications in the fields of electricity dispatch and design optimization for heating systems. We first select a suitable metamodeling approach by conducting pre-tests on a small scale. Based on this, we selected artificial neural networks due to their good performance compared to other approaches and the multiple possibilities of network topologies and hyperparameter settings. As for the dispatch model, we show that a high accuracy of price replication can be achieved while substantially reducing the runtimes per investigated scenario (from 2 hours on average down to less than 30 seconds). With the design optimization model, we find double-edged results: while we also achieve a substantial reduction of runtime in this case (from ~0.8 hours to less than 30 seconds), the simultaneous forecasting of several interdependent variables proved to be problematic and the accuracy of the metamodel shows to be insufficient in many cases. Overall, we demonstrate that metamodeling is a suitable approach to complemement traditional energy system modeling rather than to replace them: the loss of traceability in (black-box) metamodels indicates the importance of hybrid solutions that combine fundamental models with metamodels.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
536 _ _ |a 1111 - Effective System Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1111
|c POF4-111
|f POF IV
|x 1
536 _ _ |a 1112 - Societally Feasible Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1112
|c POF4-111
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Priesmann, Jan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nolting, Lars
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kotzur, Leander
|0 P:(DE-Juel1)168451
|b 3
|u fzj
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 4
|u fzj
700 1 _ |a Praktiknjo, Aaron
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1002/er.7448
|g p. er.7448
|0 PERI:(DE-600)1480879-1
|n 4
|p 4550-4571
|t International journal of energy research
|v 46
|y 2022
|x 0363-907X
856 4 _ |u https://juser.fz-juelich.de/record/877680/files/Intl%20J%20of%20Energy%20Research%20-%202021%20-%20K%20hnen%20-%20The%20potential%20of%20deep%20learning%20to%20reduce%20complexity%20in%20energy%20system%20modeling.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:877680
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)168451
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156460
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrolysis and Hydrogen
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1111
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1112
|x 1
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J ENERG RES : 2021
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21