000877684 001__ 877684
000877684 005__ 20210208142325.0
000877684 0247_ $$2doi$$a10.1021/acs.jctc.0c00249
000877684 0247_ $$2ISSN$$a1549-9618
000877684 0247_ $$2ISSN$$a1549-9626
000877684 0247_ $$2Handle$$a2128/25278
000877684 0247_ $$2altmetric$$aaltmetric:85222339
000877684 0247_ $$2pmid$$apmid:32551588
000877684 0247_ $$2WOS$$aWOS:000607532300058
000877684 037__ $$aFZJ-2020-02394
000877684 082__ $$a610
000877684 1001_ $$0P:(DE-Juel1)180941$$aFrieg, Benedikt$$b0$$ufzj
000877684 245__ $$aMechanism of fully-reversible, pH-sensitive inhibition of human glutamine synthetase by tyrosine nitration
000877684 260__ $$aWashington, DC$$c2020
000877684 3367_ $$2DRIVER$$aarticle
000877684 3367_ $$2DataCite$$aOutput Types/Journal article
000877684 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594791726_2302
000877684 3367_ $$2BibTeX$$aARTICLE
000877684 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877684 3367_ $$00$$2EndNote$$aJournal Article
000877684 520__ $$aGlutamine synthetase (GS) catalyzes an ATP-dependent condensation of glutamate and ammonia to form glutamine. This reaction – and therefore GS – are indispensable for the hepatic nitrogen metabolism. Nitration of tyrosine 336 (Y336) inhibits human GS activity. GS nitration and the consequent loss of GS function are associated with a broad range of neurological diseases. The mechanism by which Y336 nitration inhibits GS, however, is not understood. Here, we show by means of unbiased MD simulations, binding and configurational free energy computations that Y336 nitration hampers ATP binding, but only in the deprotonated and negatively-charged state of residue 336. By contrast, for the protonated and neutral state, our computations indicate an increased binding affinity for ATP. pKa computations of nitrated Y336 within GS predict a pKa of ~5.3. Thus, at physiological pH nitrated Y336 exists almost exclusively in the deprotonated and negatively-charged state. In vitro experiments confirm these predictions, in that, the catalytic activity of nitrated GS is decreased at pH 7 and pH 6, but not at pH 4. These results indicate a novel, fully reversible, pH-sensitive mechanism for the regulation of GS activity by tyrosine nitration.
000877684 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000877684 536__ $$0G:(DE-Juel1)hkf7_20170501$$aForschergruppe Gohlke (hkf7_20170501)$$chkf7_20170501$$fForschergruppe Gohlke$$x1
000877684 588__ $$aDataset connected to CrossRef
000877684 7001_ $$0P:(DE-HGF)0$$aGoerg, Boris$$b1
000877684 7001_ $$0P:(DE-HGF)0$$aQvartskhava, Natalia$$b2
000877684 7001_ $$0P:(DE-HGF)0$$aJeitner, Thomas$$b3
000877684 7001_ $$0P:(DE-HGF)0$$aHomeyer, Nadine$$b4
000877684 7001_ $$0P:(DE-HGF)0$$aHäussinger, Dieter$$b5
000877684 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b6$$eCorresponding author$$ufzj
000877684 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.0c00249$$gp. acs.jctc.0c00249$$n7$$p4694–4705$$tJournal of chemical theory and computation$$v16$$x1549-9626$$y2020
000877684 8564_ $$uhttps://juser.fz-juelich.de/record/877684/files/acs.jctc.0c00249.pdf
000877684 8564_ $$uhttps://juser.fz-juelich.de/record/877684/files/GS_nitration_MAIN_JCTC_rev_final.pdf$$yPublished on 2020-06-17. Available in OpenAccess from 2021-06-17.
000877684 8564_ $$uhttps://juser.fz-juelich.de/record/877684/files/GS_nitration_MAIN_JCTC_rev_final.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-06-17. Available in OpenAccess from 2021-06-17.
000877684 8564_ $$uhttps://juser.fz-juelich.de/record/877684/files/acs.jctc.0c00249.pdf?subformat=pdfa$$xpdfa
000877684 909CO $$ooai:juser.fz-juelich.de:877684$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877684 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180941$$aForschungszentrum Jülich$$b0$$kFZJ
000877684 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b6$$kFZJ
000877684 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000877684 9141_ $$y2020
000877684 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000877684 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000877684 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877684 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000877684 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2018$$d2020-01-16
000877684 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000877684 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000877684 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000877684 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2018$$d2020-01-16
000877684 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-16
000877684 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000877684 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000877684 920__ $$lyes
000877684 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000877684 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000877684 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x2
000877684 980__ $$ajournal
000877684 980__ $$aVDB
000877684 980__ $$aUNRESTRICTED
000877684 980__ $$aI:(DE-Juel1)JSC-20090406
000877684 980__ $$aI:(DE-Juel1)NIC-20090406
000877684 980__ $$aI:(DE-Juel1)IBI-7-20200312
000877684 9801_ $$aFullTexts