001     877684
005     20210208142325.0
024 7 _ |a 10.1021/acs.jctc.0c00249
|2 doi
024 7 _ |a 1549-9618
|2 ISSN
024 7 _ |a 1549-9626
|2 ISSN
024 7 _ |a 2128/25278
|2 Handle
024 7 _ |a altmetric:85222339
|2 altmetric
024 7 _ |a pmid:32551588
|2 pmid
024 7 _ |a WOS:000607532300058
|2 WOS
037 _ _ |a FZJ-2020-02394
082 _ _ |a 610
100 1 _ |a Frieg, Benedikt
|0 P:(DE-Juel1)180941
|b 0
|u fzj
245 _ _ |a Mechanism of fully-reversible, pH-sensitive inhibition of human glutamine synthetase by tyrosine nitration
260 _ _ |a Washington, DC
|c 2020
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594791726_2302
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Glutamine synthetase (GS) catalyzes an ATP-dependent condensation of glutamate and ammonia to form glutamine. This reaction – and therefore GS – are indispensable for the hepatic nitrogen metabolism. Nitration of tyrosine 336 (Y336) inhibits human GS activity. GS nitration and the consequent loss of GS function are associated with a broad range of neurological diseases. The mechanism by which Y336 nitration inhibits GS, however, is not understood. Here, we show by means of unbiased MD simulations, binding and configurational free energy computations that Y336 nitration hampers ATP binding, but only in the deprotonated and negatively-charged state of residue 336. By contrast, for the protonated and neutral state, our computations indicate an increased binding affinity for ATP. pKa computations of nitrated Y336 within GS predict a pKa of ~5.3. Thus, at physiological pH nitrated Y336 exists almost exclusively in the deprotonated and negatively-charged state. In vitro experiments confirm these predictions, in that, the catalytic activity of nitrated GS is decreased at pH 7 and pH 6, but not at pH 4. These results indicate a novel, fully reversible, pH-sensitive mechanism for the regulation of GS activity by tyrosine nitration.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Forschergruppe Gohlke (hkf7_20170501)
|0 G:(DE-Juel1)hkf7_20170501
|c hkf7_20170501
|f Forschergruppe Gohlke
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Goerg, Boris
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Qvartskhava, Natalia
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jeitner, Thomas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Homeyer, Nadine
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Häussinger, Dieter
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acs.jctc.0c00249
|g p. acs.jctc.0c00249
|0 PERI:(DE-600)2166976-4
|n 7
|p 4694–4705
|t Journal of chemical theory and computation
|v 16
|y 2020
|x 1549-9626
856 4 _ |u https://juser.fz-juelich.de/record/877684/files/acs.jctc.0c00249.pdf
856 4 _ |y Published on 2020-06-17. Available in OpenAccess from 2021-06-17.
|u https://juser.fz-juelich.de/record/877684/files/GS_nitration_MAIN_JCTC_rev_final.pdf
856 4 _ |y Published on 2020-06-17. Available in OpenAccess from 2021-06-17.
|x pdfa
|u https://juser.fz-juelich.de/record/877684/files/GS_nitration_MAIN_JCTC_rev_final.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/877684/files/acs.jctc.0c00249.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877684
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180941
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-16
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CHEM THEORY COMPUT : 2018
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM THEORY COMPUT : 2018
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21