000877685 001__ 877685
000877685 005__ 20230522110531.0
000877685 0247_ $$2doi$$a10.1007/s00066-020-01663-3
000877685 0247_ $$2Handle$$a2128/25769
000877685 0247_ $$2pmid$$apmid:32647917
000877685 0247_ $$2WOS$$aWOS:000546839700001
000877685 037__ $$aFZJ-2020-02395
000877685 082__ $$a610
000877685 1001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b0$$eCorresponding author
000877685 245__ $$aRadiomics in radiation oncology—basics, methods, and limitations
000877685 260__ $$aHeidelberg$$bSpringer Medizin$$c2020
000877685 3367_ $$2DRIVER$$aarticle
000877685 3367_ $$2DataCite$$aOutput Types/Journal article
000877685 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601043987_14614
000877685 3367_ $$2BibTeX$$aARTICLE
000877685 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877685 3367_ $$00$$2EndNote$$aJournal Article
000877685 520__ $$aOver the past years, the quantity and complexity of imaging data available for the clinical management of patients with solid tumors has increased substantially. Without the support of methods from the field of artificial intelligence (AI) and machine learning, a complete evaluation of the available image information is hardly feasible in clinical routine. Especially in radiotherapy planning, manual detection and segmentation of lesions is laborious, time consuming, and shows significant variability among observers. Here, AI already offers techniques to support radiation oncologists, whereby ultimately, the productivity and the quality are increased, potentially leading to an improved patient outcome. Besides detection and segmentation of lesions, AI allows the extraction of a vast number of quantitative imaging features from structural or functional imaging data that are typically not accessible by means of human perception. These features can be used alone or in combination with other clinical parameters to generate mathematical models that allow, for example, prediction of the response to radiotherapy. Within the large field of AI, radiomics is the subdiscipline that deals with the extraction of quantitative image features as well as the generation of predictive or prognostic mathematical models. This review gives an overview of the basics, methods, and limitations of radiomics, with a focus on patients with brain tumors treated by radiation therapy.
000877685 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000877685 536__ $$0G:(GEPRIS)428090865$$aDFG project 428090865 - Radiomics basierend auf MRT und Aminosäure PET in der Neuroonkologie $$c428090865$$x1
000877685 588__ $$aDataset connected to CrossRef
000877685 7001_ $$0P:(DE-HGF)0$$aBousabarah, Khaled$$b1
000877685 7001_ $$0P:(DE-HGF)0$$aHoevels, Mauritius$$b2
000877685 7001_ $$0P:(DE-HGF)0$$aTreuer, Harald$$b3
000877685 773__ $$0PERI:(DE-600)2003907-4$$a10.1007/s00066-020-01663-3$$p848–855$$tStrahlentherapie und Onkologie$$v196$$x0039-2073$$y2020
000877685 8564_ $$uhttps://juser.fz-juelich.de/record/877685/files/Lohmann2020_Article_RadiomicsInRadiationOncologyBa-1.pdf$$yOpenAccess
000877685 8564_ $$uhttps://juser.fz-juelich.de/record/877685/files/Lohmann2020_Article_RadiomicsInRadiationOncologyBa-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877685 8767_ $$d2020-06-24$$eHybrid-OA$$jDEAL$$lDEAL: Springer$$pSUON-D-20-00178R1$$zapproved im dashboard
000877685 909CO $$ooai:juser.fz-juelich.de:877685$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000877685 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b0$$kFZJ
000877685 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000877685 9141_ $$y2020
000877685 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000877685 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000877685 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000877685 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-14
000877685 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-14
000877685 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877685 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSTRAHLENTHER ONKOL : 2018$$d2020-01-14
000877685 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000877685 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-14
000877685 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-01-14$$wger
000877685 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-14
000877685 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877685 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-14
000877685 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000877685 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-01-14
000877685 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-14$$wger
000877685 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000877685 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000877685 980__ $$ajournal
000877685 980__ $$aVDB
000877685 980__ $$aUNRESTRICTED
000877685 980__ $$aI:(DE-Juel1)INM-4-20090406
000877685 980__ $$aAPC
000877685 9801_ $$aAPC
000877685 9801_ $$aFullTexts