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Abstract

Over the past years, the quantity and complexity of imaging data available for the clinical management of patients with

solid tumors has increased substantially. Without the support of methods from the field of artificial intelligence (AI) and

machine learning, a complete evaluation of the available image information is hardly feasible in clinical routine. Especially

in radiotherapy planning, manual detection and segmentation of lesions is laborious, time consuming, and shows significant

variability among observers. Here, AI already offers techniques to support radiation oncologists, whereby ultimately, the

productivity and the quality are increased, potentially leading to an improved patient outcome. Besides detection and

segmentation of lesions, AI allows the extraction of a vast number of quantitative imaging features from structural or

functional imaging data that are typically not accessible by means of human perception. These features can be used alone

or in combination with other clinical parameters to generate mathematical models that allow, for example, prediction of

the response to radiotherapy. Within the large field of AI, radiomics is the subdiscipline that deals with the extraction of

quantitative image features as well as the generation of predictive or prognostic mathematical models. This review gives

an overview of the basics, methods, and limitations of radiomics, with a focus on patients with brain tumors treated by

radiation therapy.
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Introduction

The diagnosis of brain tumors and the assessment of re-

sponse to radiotherapy [1–4] are mainly based on the re-

sults of modern neuroimaging techniques and, essentially,

the histomolecular examination of tissue samples collected

during tumor resection or biopsy. For decades, brain tumor

patients have been diagnosed by means of structural neu-

roimaging techniques such as contrast-enhanced computed

tomography (CT) or magnetic resonance imaging (MRI). In

recent years, advanced imaging methods have entered clin-

ical routine. These include, in particular, perfusion (PWI)-

and diffusion-weighted (DWI) MRI, as well as amino acid
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positron emission tomography (PET) [5, 6]. In combination

with the anatomic information, these methods provide func-

tional and metabolic parameters that are of great benefit in

the assessment of, e.g., treatment response or estimation

of prognosis. The increasing availability of hybrid PET/CT

and PET/MRI scanners also simplifies the use of these ad-

vanced techniques in a clinical setting. However, with the

increasing amount of data available for diagnosis, a com-

plete, accurate, and timely evaluation of the data in clinical

routine is almost impossible without considerable computer

support.

Since methods from the fields of artificial intelligence

(AI) and machine learning allow for a partial or full au-

tomation of various steps within the diagnostic routine, it

is not surprising that these methods are investigated exten-

sively and have already been applied in clinical routine in

some cases. Especially in the field of radiotherapy, the au-

tomated detection of lesions such as brain metastases and

the subsequent segmentation is of importance. These meth-

ods not only support the radiation oncologist, resulting in

increased productivity, but can, in addition, help to detect

small lesions which are frequently overlooked otherwise.
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Furthermore, computer-aided analysis of the large amount

of information obtained from structural and functional neu-

roimaging may also help to increase the comparability of

results as it does not depend on the experience level of the

evaluating clinician.

Besides automation of laborious clinical procedures such

as the manual detection and segmentation of lesions for

radiotherapy planning, AI also offers the potential to extract

otherwise undiscovered features from the imaging data for

diagnostic use. These quantitative imaging features further

characterize the underlying tumor biology and are usually

beyond human perception. These features can be combined

with conventional imaging parameters from structural and

molecular neuroimaging as well as with clinical data such as

the patient’s age or molecular markers to develop predictive

or prognostic mathematical models that are subsequently

used to answer clinical questions, such as the assessment of

treatment response to radiation therapy or the non-invasive

diagnosis of molecular parameters [7]. The extraction of

quantitative imaging features as well as the generation and

evaluation of mathematical models for diagnosis is termed

radiomics and can be regarded as a special application of

AI [8–12].

However, the use of these computer-based methods

must be carefully and critically evaluated. The applied

neuroimaging protocols and AI-based methods are poorly

standardized and vary substantially. This review article

gives an overview of the basics, methods, and limita-

tions of radiomics, with a special focus on feature-based

radiomics in brain tumors treated by radiation therapy.

Radiomics

Radiomics aims at the extraction of quantitative parame-

ters from routinely acquired medical imaging data, thereby

allowing additional data analysis at low cost. Most of the

features characterize the underlying image (tumor) hetero-

geneity. In classic radiomics approaches, sometimes also

called feature-based radiomics, the radiomics features to

be extracted are predefined and calculated from a man-

ually or semi-automatically segmented image. In contrast,

deep learning-based radiomics follows a different approach

for the extraction of quantitative parameters. Here, the ra-

diomics features are not predefined, but identified and gen-

erated from the underlying data by computational mod-

els. Furthermore, image segmentation is not necessarily re-

quired for deep learning-based radiomics, despite providing

image segmentations usually improves model performance.

Although most of the radiomics models have to prove their

value in the clinical setting, the process of feature extraction

applies semi- or fully automated methods from advanced

statistics and machine learning and may as such lead to
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more robust, reproducible, and reliable results compared to

the reader-dependent clinical interpretation of imaging data.

Feature-based radiomics

To calculate radiomics features, manual or semi-automatic

segmentations of the region of interest (ROI) or volume

of interest (VOI) are mandatory. Typically, the contrast-en-

hancing portion of the tumor in MRI is used for radiomics

analysis. However, including information contained in the

infiltration zone of the lesion by also considering signal

abnormalities on T2-weighted or fluid-attenuated inversion

recovery (FLAIR) MRI provides a more realistic represen-

tation of the whole tumor and allows the radiomics analysis

to be performed on a larger segment, potentially encoding

more information and resulting in a better diagnostic per-

formance. Although the number of studies using amino acid

PET images for radiomics analysis is still low, especially

the combined analysis of amino acid PET and MRI ra-

diomics encodes more diagnostic information than either

modality alone [13, 14] and might gain clinical relevance.

In patients with brain tumors, image segmentation in clin-

ical routine is usually performed manually on CT or MRI

for the purpose of radiotherapy planning or volumetric as-

sessment of therapy response. However, a manual, three-di-

mensional differential segmentation of tumor regions with

contrast enhancement, necrosis, and perifocal edema is la-

borious, time consuming, and strongly dependent on the

performing physician. Methods from the field of AI includ-

ing textural feature analysis and deep learning-based meth-

ods are already available and currently under investigation

for routine clinical application [15–21].

As mentioned above, radiomics aims at the extraction

of quantitative imaging features from routinely acquired

imaging data. Consequently, in order to enable a high re-

producibility and generalizability of the results, the image

data have to undergo several preprocessing steps before

feature extraction. One of the first preprocessing steps is

interpolation of the imaging data to isotropic voxel spac-

ing, which allows for a better comparison of heterogenous,

multi-institutional imaging data. Furthermore, the calcula-

tion of radiomics features, especially textural features, re-

quires rotationally invariant voxels, achieved by interpo-

lation. Images can either be upsampled, e.g., the original

image with a voxel spacing of 1.0× 1.0× 3.0mm3 is up-

sampled to 1.0× 1.0× 1.0mm3, or downsampled, e.g., the

original image with a voxel spacing of 1.0× 1.0× 3.0mm3

is downsampled to 3.0× 3.0× 3.0mm3. While upsampling

introduces artificial information and might increase image

noise, downsampling conversely incurs information loss.

Consequently, there is currently no clear recommendation

for either of the two procedures [22].

Discretization or quantization of image intensities is of

particular importance to allow for comprehensible feature

extraction [22]. Two methods for image discretization are

commonly used. The first method performs a discretization

of the image intensities to a fixed number of bins, which

allows for a direct comparison of feature values across dif-

ferent patients and partly performs an image normaliza-

tion, which is of importance for imaging procedures such as

structural MRI that are usually acquired in arbitrary units.

However, no correlation to the original image intensities

can be established. The second method uses a fixed bin

size, whereby a new bin is assigned for every intensity in-

terval with a fixed bin with. Importantly, for structural MRI

data with arbitrary intensity units, the fixed bin size dis-

cretization is not recommended. However, as the relation-

ship to the original intensity scale is maintained, the fixed

bin size discretization could be especially useful for quan-

titative imaging modalities such as PET. Of note, the image

discretization has a substantial impact on the extracted ra-

diomics features and, hence, on the reproducibility of the

results [22].

Normalization of the image intensities ensures a better

comparability of the results between different scanners, pro-

tocols, and patients. Commonly used procedures for image

intensity normalization are white-stripe [23] or z-score nor-

malization [24]. Other typical preprocessing steps include,

but are not limited to, spatial smoothing, noise reduction,

spatial resampling, brain extraction, and corrections of MRI

field inhomogeneities.

Following image preprocessing and segmentation, ra-

diomics features can be calculated, most of which reflect tu-

mor heterogeneity. Since the radiomics features are mathe-

matically predefined and based on a huge number of slightly

different mathematical definitions, a large number of ra-

diomics features (usually more than 1,000) can be extracted

from medical images. Typically, radiomics features are di-

vided into the following subgroups:

i. Shape features: quantify the geometric relations and

properties of the segmented lesions such as volume,

maximum surface area, maximum diameter, compact-

ness, or sphericity [25].

ii. Histogram-based features or first-order statistics: the

distribution of image intensity values within the seg-

mented lesions is typically represented by histograms.

From the histograms, quantitative features can be cal-

culated that do not consider any spatial orientation or

relationship of the voxels such as the mean, maximum,

minimum, median, skewness, or kurtosis [9].

iii. Textural features or second-order statistics: textural

features represent the statistical relationship between

the intensity levels of neighboring pixels or voxels or

groups of pixels or voxels within the segmented lesion
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and, thereby, quantify image heterogeneity. Textural

features are not extracted directly from the images but

from several descriptive matrices that already encode

specific spatial relations between pixels or voxels in the

segmented lesion. The most commonly used matrices

for calculation of textural features are the gray-level

run-length matrix (GLRLM), which encodes the size

of homogenous runs for each image intensity [26], the

neighborhood gray-level different matrix (NGLDM),

which corresponds to the difference of intensity lev-

els between one voxel and all of its neighbors in three

dimensions, and the gray level co-occurrence matrix

(GLCM) [27], which represents the frequency of oc-

currence of two intensity levels in neighboring pixels

or voxels within a specific distance along a fixed di-

rection. Several other matrices exist that encode certain

aspects of spatial relations between image intensities in

the segmented lesion and, thus, allow the computation

of a large number of textural features [27].

iv. Higher-order statistics features: the three previous sub-

groups of features are all usually calculated on the pre-

processed original image without any additional image

filters. Higher-order statistics features are computed af-

ter the application of specific mathematical transforma-

tions or filters that aim at highlighting certain aspects of

the segmented lesion such as repeating patterns, edges,

histogram-oriented gradients, or local binary patterns.

Typical mathematical transformations used for the ex-

traction of higher-order statistics features are wavelet

or Fourier transforms, fractal analysis, Minkowski func-

tionals, or the Laplacian transform of Gaussian-filtered

images (Laplacian of Gaussian) [28].

In summary, a large number of features can be calcu-

lated from a single segmented lesion, leading to the prob-

lem of distinguishing the parameters relevant to the clinical

problem under investigation from the irrelevant and redun-

dant ones. This so-called feature selection is of high impor-

tance for generating a meaningful predictive or prognostic

model from the computed features, especially if the num-

ber of available datasets is limited. Feature selection uses

advanced statistical methods to identify a subset of features

that are neither redundant, constant, duplicated, irrelevant,

nor highly correlated [12].

It should be noted that improper feature selection can

also lead to overfitting, i.e., if a very homogenous dataset

from the same scanner acquired with the same protocol is

used for feature selection, the features identified as relevant

in this particular setting may not be relevant in other set-

tings. Here, overfitting denotes the generation of a model

that corresponds too closely or exactly to a particular set of

data, whereby it fails to reliably predict outcomes from so

far unseen observations. One way to overcome this limita-

tion is to perform feature selection on multicenter datasets

ideally representing a large variety of scanners and acqui-

sition protocols, whereby the probability of selecting only

locally relevant features, hence, the risk of overfitting is

reduced. Unfortunately, in most studies, large multicenter

datasets are not available.

Generally, two types of feature selection techniques are

used in radiomics studies, unsupervised and supervised fea-

ture selection [29]. Unsupervised feature selection meth-

ods such as principal component analysis (PCA) or cluster

analysis aim at the identification and removal of redundant

features from the feature space, whereby class labels are

not considered [12]. Supervised feature selection techniques

also take into consideration the relation of the features to

the class labels, i.e., features that contribute most to the

diagnostic problem are preferred. Consequently, supervised

feature selection techniques usually result in better feature

subsets compared to the unsupervised methods. Different

unsupervised feature selection methods exist, of which fil-

ter methods, wrapper methods, and embedded methods are

those most prominent in radiomics.

Filter methods are also called univariate methods and sta-

tistically evaluate the relation between the features without

considering their correlations and interactions. Univariate

methods are, for example, the chi-squared score, the Stu-

dent’s t-test, the Wilcoxon rank sum test, or the Fisher score

[30, 31].

Wrapper methods, also called multivariate methods,

partly overcome the limitations of univariate methods

by taking into consideration correlations and interactions

among the radiomics features. While univariate methods

only investigate the statistical relationship between the

radiomics features, wrapper methods create a subset of fea-

tures, apply this subset to a predictive model, and evaluate

the quality of its performance. Thereafter, a new subset of

features is tested and, finally, the best performing subset of

features represents the final set of selected features. Due to

the iterative nature of wrapper methods, these methods are

computationally intensive. These methods include bidirec-

tional search, exhaustive feature selection, forward feature

selection, or backward feature elimination [30, 31].

Embedded methods combine the advantages of filter

and wrapper methods. The feature selection process is

performed during the generation of the machine learning

model, i.e., during the training phase of the model. Here,

interactions and correlations of the radiomics features are

considered, leading to more accurate feature selection re-

sults compared to filter methods. Additionally, since feature

selection is performed during the training phase of the ma-

chine learning models and does not require an additional

predictive model solely for performance evaluation of the

different subsets of features, embedded methods are com-

putationally faster than wrapper methods and less prone
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to overfitting. Examples of embedded feature selection

methods are tree-based algorithms such as the random

forest classifier, the least absolute shrinkage and selection

operator (LASSO), or ridge regression [30, 31].

Now that a subset of relevant features with low redun-

dancy has been identified by feature selection, a mathemati-

cal model for the prediction of a known, underlying ground

truth can be generated. This step within the radiomics work-

flow is called model generation. Usually, several different

machine learning algorithms and classifiers can be used to

generate predictive or prognostic models according to the

goal of the study. Among the machine learning algorithms

and classifiers most commonly used for radiomics analy-

sis are linear and logistic regression, decision trees, e.g.,

random forests, neural networks, support vector machines,

or the Cox proportional hazards model in case of censored

survival data. Model generation includes the iterative search

for a set of optimal parameters that define the general struc-

ture of the model, a process called hyperparameter tuning.

In order to identify the best possible machine learning algo-

rithm for the diagnostic problem, the selected model has to

be evaluated on a subset of data. To avoid the risk of over-

fitting by generating and testing the mathematical model

on the same subset of data, the available dataset is ide-

ally subdivided into a training and a validation dataset. If

the model was trained and evaluated on the same subset

of data, a perfect classification of results could be easily

achieved by an algorithm that simply repeats the labels of

the training data. Obviously, such a highly overfitted model

would not provide any useful prediction on new data that

was not part of the training dataset. It should be noted, that

the distribution of samples of each class remains approxi-

mately the same after data splitting, i.e., if 40% of samples

were diagnosed with a recurrent tumor, and 60% were diag-

nosed with treatment-related tissue changes in the original

dataset, this proportion of diagnoses should also remain

approximately the same in the training and the validation

dataset (stratified split of data), which is particularly impor-

tant for small datasets. Ideally, the model that showed the

best diagnostic performance in the validation dataset is fi-

nally applied to a test dataset. The test dataset represents the

data the model would face when applied in clinical routine.

Consequently, every radiomics model should prove its per-

formance, robustness, and reliability on the test dataset, but

the test dataset should never be used for tuning of model

hyperparameters.

The described workflow for model generation and evalu-

ation including splitting of the data into three subgroups ob-

viously requires large datasets. Unfortunately, oncological

studies including studies in the field of radiation oncology

usually contain a maximum of several hundred datasets.

However, machine learning also offers methods such as

bootstrapping or cross-validation to assess model perfor-

mance even without the availability of a test dataset. In

cross-validation, e.g., 10-fold cross-validation, the dataset

is partitioned into ten subsets of equal size. The generated

model is evaluated on nine datasets as training data while

one subset of data is retained for model validation. This

process is repeated ten times, with each subset used once

as validation data. Finally, to assess the overall model per-

formance, the classification accuracy from each iteration is

averaged.

Deep learning-based radiomics

Deep learning generally describes the process of apply-

ing deep neural network architectures for problem solving,

which are particular types of machine learning algorithms.

Originally, artificial neural networks that provide the ba-

sis for more advanced architectures were inspired by the

working principle of the human visual system. By adding

layers of hidden neurons beyond the simple input and out-

put layers from artificial neural networks, a new level of

complexity was added that enabled deep learning. Deep

learning-based radiomics automatically identifies and ex-

tracts high-dimensional features from the input images at

different levels of scaling and abstraction, resulting in mod-

els especially useful for pattern recognition or classification

of high-dimensional non-linear data [32]. The usefulness of

deep learning-based methods for the automated identifica-

tion and segmentation of brain metastases and gliomas for

radiation therapy planning has been demonstrated in several

studies [17–21].

Deep learning-based radiomics uses a workflow that is

very different from the feature-based radiomics approach

described above. Instead of using mathematically prede-

fined features, different architectures of neural networks

such as convolutional neural networks (CNNs) or auto-en-

coders are used to generate and identify the most important

features from the input data. In particular, autoencoder net-

works, which are a special, unsupervised variant of CNNs,

aim at compression of the image content and mapping onto

a relatively short but representative feature vector [33]. In

general, deep learning-based radiomics uses a cascaded sys-

tem of single-layer neural networks which are trained to

learn and identify structures of relevance for the classifi-

cation problem in the imaging data [34]. Here, previous

mathematical definitions of features and feature selection

become unnecessary. Further combinations of the extracted

feature vectors are then combined to generate features with

an even higher level of abstraction. In a final step, the iden-

tified features can be used for classification by the neural

network itself, or leave the network and undergo the process

of model generation similar to the feature-based radiomics

approaches described above using different classifiers from

conventional machine learning such as decision trees, re-
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gression models, or support vector machines. Of note, while

feature-based radiomics always requires segmented images

for feature extraction, deep learning-based radiomics, espe-

cially CNNs, also function on unsegmented images.

Since the features are generated and extracted directly

from the underlying data and a subset of best perform-

ing features is automatically extracted, feature selection is

rarely performed. However, in order to reduce the risk of

overfitting, regularization techniques and dropout of learned

connection weights are used. One limitation of deep learn-

ing-based radiomics is the high correlation between the fea-

tures and the input data, as the features are generated from

that very data. Therefore, in contrast to feature-based ra-

diomics, large datasets are necessary to identify a relevant

and robust feature subset. However, using a machine learn-

ing technique called transfer learning, this limitation can

be partly overcome. In transfer learning, a neural network

is used that has already been pre-trained on a different,

but closely related task, e.g., a neural network for brain tu-

mor segmentation that was originally trained on imaging

data from patients with brain metastases might also pro-

vide useful results for the segmentation of glioma patients

[35]. Hereby, both the amount of data necessary to identify

a relevant feature subset and the computational demand are

reduced.

Limitations

Despite the promising results and the potential of radiomics,

the repeatability, reproducibility, and transferability of ra-

diomics features is still an issue and often depends on the

used imaging modality, sequence, spatial resolution, size

of the image, image quality, reconstruction and correction

parameters, as well as motion artefacts and other factors.

Repeatability is commonly assessed by the extraction of ra-

diomics features from repeated acquisitions of images under

identical or near-identical acquisition and processing pa-

rameters. In contrast, reproducibility of radiomics features,

also called robustness, is measured if the acquisition param-

eters and applied measuring systems differ [36]. A recent

review performed an extensive literature search and iden-

tified radiomics features that were shown to be repeatable

and reproducible among the investigated studies [37]. The

authors describe that first-order features, i.e., histogram-

based features, were more reproducible than shape metrics

and textural features. The most stable feature according to

this review was the first-order feature entropy [37]. Such

systematic review articles focusing on the repeatability and

reproducibility of radiomic features are still scarce but of

major importance for advancing toward a better standard-

ization of the results from radiomics studies. The Image

Biomarker Standardization Initiative (IBSI) provides image

biomarker nomenclature and definitions, reporting guide-

lines as well as benchmark datasets and benchmark values,

to enable study groups working in the field of radiomics to

verify their image processing and feature extraction [22].

In terms of repeatability and reproducibility, deep learn-

ing-based radiomics may be advantageous, as the self-learn-

ing neural networks show a better capability for generaliza-

tion and transfer than feature-based approaches. However,

also the models developed from deep learning-based ra-

diomics ultimately have to prove their reliability in clinical

routine. Most importantly, data acquisition and analysis as

well as model generation need further standardization in or-

der to allow for a better understanding and reproducibility

of published results. Although different open-source soft-

ware packages for feature-based radiomics, (PyRadiomics

[38], MaZda [39], and LifeX [40]), as well as open-source

frameworks for deep learning-based radiomics (Keras [41],

TensorFlow [42], PyTorch [43]) are available, the workflow

used in most studies is still complex and often not reported

in sufficient detail, so that it is almost impossible for other

research groups to fully comprehend the presented results,

not to mention reproducing them.

Another limitation to the application of radiomics mod-

els in clinical routine is the problem of interpretability of

the extracted features and the generated models. Mostly,

radiomics analysis are perceived as a “black box”, i.e., it

is very difficult to (clinically) interpret the generated pre-

dictions [36]. However, some methods to improve the inter-

pretability of radiomics analyses have been developed, such

as graph-based approaches for feature-based radiomics [44]

or visualization tools for deep learning-based radiomics that

highlight regions of the segmented tumor according to their

importance for the prediction of the generated classifier

[45].

Efforts to overcome the mentioned shortcomings are on-

going [22, 46, 47].

Conclusion

The number of studies evaluating the potential of feature-

based as well as deep learning-based radiomics for appli-

cation in radiation oncology is increasing. Especially in

combination with established sources of diagnostic infor-

mation such as clinical, histomolecular, or conventional

imaging parameters, radiomics may contribute significantly

towards an improved diagnosis and treatment management

in patients with brain tumors and other solid tumors. In

radiation oncology in particular, radiomics has great poten-

tial for the automated detection and segmentation of tar-

get volumes, the differentiation of radiation-induced tissue

changes from actual tumor recurrences, and the prediction

of the location and timing of local recurrences.
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