000877689 001__ 877689
000877689 005__ 20240610121210.0
000877689 0247_ $$2doi$$a10.1063/5.0011081
000877689 0247_ $$2ISSN$$a0003-6951
000877689 0247_ $$2ISSN$$a1077-3118
000877689 0247_ $$2ISSN$$a1520-8842
000877689 0247_ $$2Handle$$a2128/25144
000877689 0247_ $$2WOS$$aWOS:000545791400001
000877689 037__ $$aFZJ-2020-02399
000877689 082__ $$a530
000877689 1001_ $$00000-0001-5711-850X$$aMi, Shao-Bo$$b0$$eCorresponding author
000877689 245__ $$aAtomic-scale imaging of interfacial polarization in cuprate-titanate heterostructures
000877689 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2020
000877689 3367_ $$2DRIVER$$aarticle
000877689 3367_ $$2DataCite$$aOutput Types/Journal article
000877689 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593170444_7882
000877689 3367_ $$2BibTeX$$aARTICLE
000877689 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877689 3367_ $$00$$2EndNote$$aJournal Article
000877689 520__ $$aThe interfaces in oxide heterostructures that bring novel physical phenomena and functionalities have attracted great attention in fundamental research and device applications. For uncovering structure–property relationships of oxide heterostructures, direct evidence of the atomic-scale structure of heterointerfaces is highly desired. Here, we report on studying the structure of interfaces between YBa2Cu3O7-δ thin films and SrTiO3 substrates by means of aberration-corrected ultrahigh-resolution electron microscopy. Employing advanced imaging and spectroscopic techniques, shifts of atoms at the interface away from the regular lattice sites are measured, leading to the interfacial polarity. The local polarization induced by the atomic shifts directs toward the cuprate films and is estimated to be about 36.1 μC/cm2. The observed interfacial polar layer is understood by the special atomic configuration across the interface, which could modulate the electrical properties in superconducting devices that are based on the ferroelectric/superconductor heterosystems.
000877689 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000877689 588__ $$aDataset connected to CrossRef
000877689 7001_ $$0P:(DE-HGF)0$$aYao, Tian$$b1
000877689 7001_ $$0P:(DE-HGF)0$$aCheng, Shao-Dong$$b2
000877689 7001_ $$0P:(DE-HGF)0$$aFaley, Micheal I.$$b3
000877689 7001_ $$0P:(DE-Juel1)130898$$aPoppe, Ulrich$$b4
000877689 7001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b5
000877689 7001_ $$0P:(DE-HGF)0$$aWang, Dawei$$b6
000877689 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b7
000877689 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/5.0011081$$gVol. 116, no. 25, p. 251603 -$$n25$$p251603 -$$tApplied physics letters$$v116$$x1077-3118$$y2020
000877689 8564_ $$uhttps://juser.fz-juelich.de/record/877689/files/5.0011081.pdf$$yPublished on 2020-06-23. Available in OpenAccess from 2021-06-23.
000877689 8564_ $$uhttps://juser.fz-juelich.de/record/877689/files/5.0011081.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-06-23. Available in OpenAccess from 2021-06-23.
000877689 909CO $$ooai:juser.fz-juelich.de:877689$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000877689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130898$$aForschungszentrum Jülich$$b4$$kFZJ
000877689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b7$$kFZJ
000877689 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000877689 9141_ $$y2020
000877689 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000877689 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000877689 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-14
000877689 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-14
000877689 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877689 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-14
000877689 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000877689 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-14
000877689 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000877689 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-14
000877689 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-14
000877689 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2018$$d2020-01-14
000877689 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-14$$wger
000877689 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000877689 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-14
000877689 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-14$$wger
000877689 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000877689 920__ $$lyes
000877689 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000877689 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000877689 9801_ $$aFullTexts
000877689 980__ $$ajournal
000877689 980__ $$aVDB
000877689 980__ $$aUNRESTRICTED
000877689 980__ $$aI:(DE-Juel1)PGI-5-20110106
000877689 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000877689 981__ $$aI:(DE-Juel1)ER-C-1-20170209