001     877689
005     20240610121210.0
024 7 _ |a 10.1063/5.0011081
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a 1520-8842
|2 ISSN
024 7 _ |a 2128/25144
|2 Handle
024 7 _ |a WOS:000545791400001
|2 WOS
037 _ _ |a FZJ-2020-02399
082 _ _ |a 530
100 1 _ |a Mi, Shao-Bo
|0 0000-0001-5711-850X
|b 0
|e Corresponding author
245 _ _ |a Atomic-scale imaging of interfacial polarization in cuprate-titanate heterostructures
260 _ _ |a Melville, NY
|c 2020
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1593170444_7882
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The interfaces in oxide heterostructures that bring novel physical phenomena and functionalities have attracted great attention in fundamental research and device applications. For uncovering structure–property relationships of oxide heterostructures, direct evidence of the atomic-scale structure of heterointerfaces is highly desired. Here, we report on studying the structure of interfaces between YBa2Cu3O7-δ thin films and SrTiO3 substrates by means of aberration-corrected ultrahigh-resolution electron microscopy. Employing advanced imaging and spectroscopic techniques, shifts of atoms at the interface away from the regular lattice sites are measured, leading to the interfacial polarity. The local polarization induced by the atomic shifts directs toward the cuprate films and is estimated to be about 36.1 μC/cm2. The observed interfacial polar layer is understood by the special atomic configuration across the interface, which could modulate the electrical properties in superconducting devices that are based on the ferroelectric/superconductor heterosystems.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yao, Tian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cheng, Shao-Dong
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Faley, Micheal I.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Poppe, Ulrich
|0 P:(DE-Juel1)130898
|b 4
700 1 _ |a Lu, Lu
|0 P:(DE-Juel1)161232
|b 5
700 1 _ |a Wang, Dawei
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 7
773 _ _ |a 10.1063/5.0011081
|g Vol. 116, no. 25, p. 251603 -
|0 PERI:(DE-600)1469436-0
|n 25
|p 251603 -
|t Applied physics letters
|v 116
|y 2020
|x 1077-3118
856 4 _ |y Published on 2020-06-23. Available in OpenAccess from 2021-06-23.
|u https://juser.fz-juelich.de/record/877689/files/5.0011081.pdf
856 4 _ |y Published on 2020-06-23. Available in OpenAccess from 2021-06-23.
|x pdfa
|u https://juser.fz-juelich.de/record/877689/files/5.0011081.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877689
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130898
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130736
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-14
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-14
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-14
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-14
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS LETT : 2018
|d 2020-01-14
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-01-14
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-14
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-14
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-14
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21