000877690 001__ 877690 000877690 005__ 20240610121210.0 000877690 0247_ $$2doi$$a10.1088/1742-6596/1559/1/012011 000877690 0247_ $$2ISSN$$a1742-6588 000877690 0247_ $$2ISSN$$a1742-6596 000877690 0247_ $$2Handle$$a2128/25147 000877690 0247_ $$2WOS$$aWOS:000558737600011 000877690 037__ $$aFZJ-2020-02400 000877690 082__ $$a530 000877690 1001_ $$0P:(DE-Juel1)174085$$aRodrigo, Rebecca$$b0$$eCorresponding author 000877690 245__ $$aNanoSQUIDs based on Nb nanobridges 000877690 260__ $$aBristol$$bIOP Publ.87703$$c2020 000877690 264_1 $$2Crossref$$3print$$bIOP Publishing$$c2020-06-01 000877690 264_1 $$2Crossref$$3print$$bIOP Publishing$$c2020-06-01 000877690 3367_ $$2DRIVER$$aarticle 000877690 3367_ $$2DataCite$$aOutput Types/Journal article 000877690 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599651754_20795 000877690 3367_ $$2BibTeX$$aARTICLE 000877690 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000877690 3367_ $$00$$2EndNote$$aJournal Article 000877690 520__ $$aAtomic-scale imaging of interfacial polarizationin cuprate-titanate heterostructuresCite as: Appl. Phys. Lett. 116, 251603 (2020); doi: 10.1063/5.0011081Submitted: 17 April 2020 . Accepted: 7 June 2020 .Published Online: 23 June 2020Shao-Bo Mi,1,a) Tian Yao,1 Shao-Dong Cheng,1,2 Micheal I. Faley,3 Ulrich Poppe,3 Lu Lu,1,2 Dawei Wang,1,2and Chun-Lin Jia1,2,3AFFILIATIONS1State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China2School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China3Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Gr€unberg Institute,ForschungszentrumJ€ulich, D-52425 J€ulich, Germanya)Author to whom correspondence should be addressed: shaobo.mi@xjtu.edu.cnABSTRACTThe interfaces in oxide heterostructures that bring novel physical phenomena and functionalities have attracted great attention infundamental research and device applications. For uncovering structure–property relationships of oxide heterostructures, direct evidence ofthe atomic-scale structure of heterointerfaces is highly desired. Here, we report on studying the structure of interfaces between YBa2Cu3O7-dthin films and SrTiO3 substrates by means of aberration-corrected ultrahigh-resolution electron microscopy. Employing advanced imagingand spectroscopic techniques, shifts of atoms at the interface away from the regular lattice sites are measured, leading to the interfacial polarity.The local polarization induced by the atomic shifts directs toward the cuprate films and is estimated to be about 36.1 lC/cm2. Theobserved interfacial polar layer is understood by the special atomic configuration across the interface, which could modulate the electricalproperties in superconducting devices that are based on the ferroelectric/superconductor heterosystems.Published under license by AIP Publishing. https://doi.org/10.1063/5.0011081Heterostructures of perovskite-based oxide materials haveattracted extensive attention from both fundamental research andtechnological applications because of their variety of fascinating physicalproperties.1,2 It has been demonstrated that interfaces in thedesigned heterostructures have striking properties, which do not existin either of the constituent bulk materials, e.g., 2D electron gas at theLaAlO3/SrTiO3 (LAO/STO) interface.3,4 In addition, the functionalitiesof the perovskite-based oxide epitaxial layers can be modulated bythe field effect arising from the adjacent layers or/and the interfacecoupling in heterostructures (e.g., proximity effects in superconductor–ferromagnet heterostructures).5–7 Among the perovskite-basedheterostructures, strongly electron-correlated materials are of essentialimportance due to their applications in superconducting field-effectdevices, e.g., high-temperature superconducting (HTS) ultrathin filmsgrown on insulating STO substrates.8–10 In these heterostructures, thecritical temperature (Tc) and phase transitions of the HTS cupratefilms can be tuned by an external electric field without involvingchemical and crystalline modulation of the materials. Also, it wasreported that the Tc of the ultrathin HTS films can be shifted by thecharge carriers, which are injected by the dielectric gate polarizationunder an applied electric field and thus leading to a suppression ofsuperconductivity in the ultrathin HTS films.11–14The Thomas–Fermi screening length (kTF) of YBa2Cu3O7-d(YBCO) is on the order of 1nm.15 Therefore, the interface couplingbetween the dielectric gate and the YBCO films has importanteffect on shifting Tc of the ultrathin YBCO films. In particular, theinterfacial polarity of the heterostructures has been expected tochange the doping level and thus to affect the superconductivity ofthe unit-cell-thick HTS cuprate films.16 Although the experimentaland theoretical investigations have been performed on studyingHTS heterostructures,9,10,17–19 the interfacial atomic arrangementof superconducting/insulating heterostructures, including reconstructions,relaxations, interatomic mixing, and distortions, is necessaryto be clarified for a deep insight into the mechanismsbehind the experimentally measured interface-related properties.In this work, we provide the atomic-scale interface structure ofYBCO/STO(001) obtained by using high-resolution imaging andspectroscopic techniques of aberration-corrected transmissionelectron microscopy (TEM) and scanning transmission electronmicroscopy (STEM).Appl. Phys. Lett. 116, 251603 (2020); doi: 10.1063/5.0011081 116, 251603-1Published under license by AIP PublishingApplied Physics Letters ARTICLE scitation.org/journal/apl 000877690 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0 000877690 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1 000877690 542__ $$2Crossref$$i2020-06-01$$uhttp://creativecommons.org/licenses/by/3.0/ 000877690 542__ $$2Crossref$$i2020-06-01$$uhttps://iopscience.iop.org/info/page/text-and-data-mining 000877690 588__ $$aDataset connected to CrossRef 000877690 7001_ $$0P:(DE-Juel1)130633$$aFaley, M. I.$$b1 000877690 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b2$$ufzj 000877690 77318 $$2Crossref$$3journal-article$$a10.1088/1742-6596/1559/1/012011$$bIOP Publishing$$d2020-06-01$$n1$$p012011$$tJournal of Physics: Conference Series$$v1559$$x1742-6588$$y2020 000877690 773__ $$0PERI:(DE-600)2166409-2$$a10.1088/1742-6596/1559/1/012011$$gVol. 1559, p. 012011 -$$n1$$p012011$$tJournal of physics / Conference Series$$v1559$$x1742-6588$$y2020 000877690 8564_ $$uhttps://juser.fz-juelich.de/record/877690/files/Rodrigo_2020_J._Phys.%20_Conf._Ser._1559_012011.pdf$$yOpenAccess 000877690 8564_ $$uhttps://juser.fz-juelich.de/record/877690/files/Rodrigo_2020_J._Phys.%20_Conf._Ser._1559_012011.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000877690 909CO $$ooai:juser.fz-juelich.de:877690$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000877690 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)174085$$aRWTH Aachen$$b0$$kRWTH 000877690 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b1$$kFZJ 000877690 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b2$$kFZJ 000877690 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000877690 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1 000877690 9141_ $$y2020 000877690 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000877690 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000877690 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000877690 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000877690 920__ $$lyes 000877690 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0 000877690 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1 000877690 9801_ $$aFullTexts 000877690 980__ $$ajournal 000877690 980__ $$aVDB 000877690 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000877690 980__ $$aI:(DE-Juel1)PGI-5-20110106 000877690 980__ $$aUNRESTRICTED 000877690 981__ $$aI:(DE-Juel1)ER-C-1-20170209 000877690 999C5 $$1Foley$$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-2048/22/6/064001$$tSuperconductor Science and Technology$$v22$$y2009 000877690 999C5 $$1Zimmerman$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.13.125$$p125 -$$tPhys. Rev. Lett.$$v13$$y1964 000877690 999C5 $$1Vu$$2Crossref$$9-- missing cx lookup --$$a10.1109/77.233586$$p1918 -$$tIEEE Trans. Appl. Supercond.$$v3$$y1993 000877690 999C5 $$1Faley$$2Crossref$$9-- missing cx lookup --$$a10.1109/TASC.2016.2631419$$tIEEE Transactions on Appl. Supercond.$$v27$$y2017 000877690 999C5 $$1Troemann$$2Crossref$$oTroemann 2007$$y2007 000877690 999C5 $$1Finkler$$2Crossref$$9-- missing cx lookup --$$a10.1021/nl100009r$$p1046 -$$tNano Letters$$v10$$y2010 000877690 999C5 $$1Anderson$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.13.195$$p195 -$$tPhysical Review Letters$$v13$$y1964 000877690 999C5 $$1Trabaldo$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.8b04991$$p1902 -$$tNano Letters$$v19$$y2019 000877690 999C5 $$1Likharev$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.51.101$$p101 -$$tRewiews of modern Physics$$v51$$y1979 000877690 999C5 $$1Lemberger$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.094515$$tPhysical Review B$$v76$$y2007 000877690 999C5 $$1Faley$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6668/aa73ad$$tSuperconductor Science and Technology$$v30$$y2017 000877690 999C5 $$1Macintyre$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.mee.2006.01.103$$p1128 -$$tMicroelectronic Engineering$$v83$$y2006 000877690 999C5 $$1Charaev$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4986416$$tJournal of Applied Physics$$v122$$y2017 000877690 999C5 $$1Hoole$$2Crossref$$9-- missing cx lookup --$$a10.1088/0268-1242/12/9/017$$p1166 -$$tSemiconductor Science and Technology$$v12$$y1997 000877690 999C5 $$1Holdeman$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.88603$$p632 -$$tApplied Physics Letters$$v28$$y1976 000877690 999C5 $$1Walke$$2Crossref$$oWalke 2010$$y2010 000877690 999C5 $$1Waser$$2Crossref$$oWaser 2012$$y2012 000877690 999C5 $$1Nührmann$$2Crossref$$oNührmann 1998$$y1998 000877690 999C5 $$1Mijatovic$$2Crossref$$oMijatovic 2005$$y2005 000877690 999C5 $$1Tesche$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00655097$$p301 -$$tJournal of Low Temperature Physics$$v29$$y1977 000877690 999C5 $$1Awschalom$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.100291$$p2108 -$$tApplied Physics Letters$$v53$$y1988 000877690 999C5 $$1Mück$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1347384$$p967 -$$tApplied Physics Letters$$v78$$y2001 000877690 999C5 $$1Wakai$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.99197$$p1182 -$$tApplied Physics Letters$$v52$$y1988 000877690 999C5 $$1Mitchell$$2Crossref$$oMitchell 2019$$y2019 000877690 999C5 $$1Ketchen$$2Crossref$$9-- missing cx lookup --$$a10.1109/20.92513$$p1212 -$$tIEEE Trans. Magn.$$v25$$y1989 000877690 999C5 $$1Faley$$2Crossref$$9-- missing cx lookup --$$a10.1109/TASC.2019.2892078$$tIEEE Transactions on Applied Superconductivity$$v29$$y2019 000877690 999C5 $$1Bluhm$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.136802$$tPhys. Rev. Lett.$$v102$$y2009 000877690 999C5 $$1Shelly$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6668/aa80cd$$tSuperconductor Science and Technology$$v30$$y2017 000877690 999C5 $$1Collins$$2Crossref$$oCollins 2019$$y2019