000877693 001__ 877693
000877693 005__ 20240712084508.0
000877693 0247_ $$2doi$$a10.1021/acsami.0c06637
000877693 0247_ $$2ISSN$$a1944-8244
000877693 0247_ $$2ISSN$$a1944-8252
000877693 0247_ $$2Handle$$a2128/33695
000877693 0247_ $$2pmid$$a32501671
000877693 0247_ $$2WOS$$aWOS:000546698600111
000877693 037__ $$aFZJ-2020-02403
000877693 082__ $$a600
000877693 1001_ $$0P:(DE-Juel1)178049$$aQiu, Kaifu$$b0$$eCorresponding author
000877693 245__ $$aDevelopment of Conductive SiC x :H as a New Hydrogenation Technique for Tunnel Oxide Passivating Contacts
000877693 260__ $$aWashington, DC$$bSoc.$$c2020
000877693 3367_ $$2DRIVER$$aarticle
000877693 3367_ $$2DataCite$$aOutput Types/Journal article
000877693 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674114614_10508
000877693 3367_ $$2BibTeX$$aARTICLE
000877693 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877693 3367_ $$00$$2EndNote$$aJournal Article
000877693 520__ $$aConductive hydrogenated silicon carbide (SiCx:H) is discovered as a promising hydrogenation material for tunnel oxide passivating contacts (TOPCon) solar cells. The proposed SiCx:H layer enables a good passivation quality and features a good electrical conductivity, which eliminates the need of etching back of SiNx:H and indium tin oxide (ITO)/Ag deposition for metallization and reduces the number of process steps. The SiCx:H is deposited by hot wire chemical vapor deposition (HWCVD) and the filament temperature (Tf) during deposition is systematically investigated. Via tuning the SiCx:H layer, implied open-circuit voltages (iVoc) up to 742 ± 0.5 mV and a contact resistivity (ρc) of 21.1 ± 5.4 mΩ·cm2 is achieved using SiCx:H on top of poly-Si(n)/SiOx/c-Si(n) stack at Tf of 2000 °C. Electrochemical capacitance–voltage (ECV) and secondary ion mass spectrometry (SIMS) measurements were conducted to investigate the passivation mechanism. Results show that the hydrogenation at the SiOx/c-Si(n) interface is responsible for the high passivation quality. To assess its validity, the TOPCon stack was incorporated as rear electron selective-contact in a proof-of-concept n-type solar cells featuring ITO/a-Si:H(p)/a-Si:H(i) as front hole selective-contact, which demonstrates a conversion efficiency up to 21.4%, a noticeable open-circuit voltage (Voc) of 724 mV and a fill factor (FF) of 80%.
000877693 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000877693 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x1
000877693 588__ $$aDataset connected to CrossRef
000877693 7001_ $$0P:(DE-Juel1)162141$$aPomaska, Manuel$$b1$$ufzj
000877693 7001_ $$0P:(DE-Juel1)174415$$aLi, Shenghao$$b2
000877693 7001_ $$0P:(DE-Juel1)130263$$aLambertz, Andreas$$b3$$ufzj
000877693 7001_ $$0P:(DE-Juel1)169946$$aDuan, Weiyuan$$b4$$ufzj
000877693 7001_ $$0P:(DE-Juel1)174037$$aGad, Alaaeldin$$b5
000877693 7001_ $$0P:(DE-Juel1)164477$$aGeitner, Matthias$$b6$$ufzj
000877693 7001_ $$0P:(DE-Juel1)145687$$aBrugger, Jana$$b7$$ufzj
000877693 7001_ $$0P:(DE-HGF)0$$aLiang, Zongcun$$b8
000877693 7001_ $$0P:(DE-HGF)0$$aShen, Hui$$b9
000877693 7001_ $$0P:(DE-Juel1)130238$$aFinger, Friedhelm$$b10$$ufzj
000877693 7001_ $$0P:(DE-Juel1)130285$$aRau, Uwe$$b11$$ufzj
000877693 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b12$$ufzj
000877693 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.0c06637$$gp. acsami.0c06637$$p29986–29992$$tACS applied materials & interfaces$$v20$$x1944-8252$$y2020
000877693 8564_ $$uhttps://juser.fz-juelich.de/record/877693/files/Conductive%20SiC%20for%20hydrogenation-Preprint.pdf$$yOpenAccess
000877693 909CO $$ooai:juser.fz-juelich.de:877693$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178049$$aForschungszentrum Jülich$$b0$$kFZJ
000877693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162141$$aForschungszentrum Jülich$$b1$$kFZJ
000877693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174415$$aForschungszentrum Jülich$$b2$$kFZJ
000877693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130263$$aForschungszentrum Jülich$$b3$$kFZJ
000877693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169946$$aForschungszentrum Jülich$$b4$$kFZJ
000877693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164477$$aForschungszentrum Jülich$$b6$$kFZJ
000877693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145687$$aForschungszentrum Jülich$$b7$$kFZJ
000877693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130238$$aForschungszentrum Jülich$$b10$$kFZJ
000877693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130285$$aForschungszentrum Jülich$$b11$$kFZJ
000877693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b12$$kFZJ
000877693 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000877693 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x1
000877693 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05
000877693 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05
000877693 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-05
000877693 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-05
000877693 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2018$$d2020-01-05
000877693 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05
000877693 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-05
000877693 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05
000877693 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877693 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2018$$d2020-01-05
000877693 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-05
000877693 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-05
000877693 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05
000877693 920__ $$lyes
000877693 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000877693 9201_ $$0I:(DE-Juel1)HNF-20170116$$kHNF$$lHelmholtz - Nanofacility$$x1
000877693 9801_ $$aFullTexts
000877693 980__ $$ajournal
000877693 980__ $$aVDB
000877693 980__ $$aUNRESTRICTED
000877693 980__ $$aI:(DE-Juel1)IEK-5-20101013
000877693 980__ $$aI:(DE-Juel1)HNF-20170116
000877693 981__ $$aI:(DE-Juel1)IMD-3-20101013