| Home > Publications database > Development of Conductive SiC x :H as a New Hydrogenation Technique for Tunnel Oxide Passivating Contacts > print |
| 001 | 877693 | ||
| 005 | 20240712084508.0 | ||
| 024 | 7 | _ | |a 10.1021/acsami.0c06637 |2 doi |
| 024 | 7 | _ | |a 1944-8244 |2 ISSN |
| 024 | 7 | _ | |a 1944-8252 |2 ISSN |
| 024 | 7 | _ | |a 2128/33695 |2 Handle |
| 024 | 7 | _ | |a 32501671 |2 pmid |
| 024 | 7 | _ | |a WOS:000546698600111 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-02403 |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Qiu, Kaifu |0 P:(DE-Juel1)178049 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Development of Conductive SiC x :H as a New Hydrogenation Technique for Tunnel Oxide Passivating Contacts |
| 260 | _ | _ | |a Washington, DC |c 2020 |b Soc. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1674114614_10508 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Conductive hydrogenated silicon carbide (SiCx:H) is discovered as a promising hydrogenation material for tunnel oxide passivating contacts (TOPCon) solar cells. The proposed SiCx:H layer enables a good passivation quality and features a good electrical conductivity, which eliminates the need of etching back of SiNx:H and indium tin oxide (ITO)/Ag deposition for metallization and reduces the number of process steps. The SiCx:H is deposited by hot wire chemical vapor deposition (HWCVD) and the filament temperature (Tf) during deposition is systematically investigated. Via tuning the SiCx:H layer, implied open-circuit voltages (iVoc) up to 742 ± 0.5 mV and a contact resistivity (ρc) of 21.1 ± 5.4 mΩ·cm2 is achieved using SiCx:H on top of poly-Si(n)/SiOx/c-Si(n) stack at Tf of 2000 °C. Electrochemical capacitance–voltage (ECV) and secondary ion mass spectrometry (SIMS) measurements were conducted to investigate the passivation mechanism. Results show that the hydrogenation at the SiOx/c-Si(n) interface is responsible for the high passivation quality. To assess its validity, the TOPCon stack was incorporated as rear electron selective-contact in a proof-of-concept n-type solar cells featuring ITO/a-Si:H(p)/a-Si:H(i) as front hole selective-contact, which demonstrates a conversion efficiency up to 21.4%, a noticeable open-circuit voltage (Voc) of 724 mV and a fill factor (FF) of 80%. |
| 536 | _ | _ | |a 113 - Methods and Concepts for Material Development (POF3-113) |0 G:(DE-HGF)POF3-113 |c POF3-113 |f POF III |x 0 |
| 536 | _ | _ | |a 121 - Solar cells of the next generation (POF3-121) |0 G:(DE-HGF)POF3-121 |c POF3-121 |f POF III |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Pomaska, Manuel |0 P:(DE-Juel1)162141 |b 1 |u fzj |
| 700 | 1 | _ | |a Li, Shenghao |0 P:(DE-Juel1)174415 |b 2 |
| 700 | 1 | _ | |a Lambertz, Andreas |0 P:(DE-Juel1)130263 |b 3 |u fzj |
| 700 | 1 | _ | |a Duan, Weiyuan |0 P:(DE-Juel1)169946 |b 4 |u fzj |
| 700 | 1 | _ | |a Gad, Alaaeldin |0 P:(DE-Juel1)174037 |b 5 |
| 700 | 1 | _ | |a Geitner, Matthias |0 P:(DE-Juel1)164477 |b 6 |u fzj |
| 700 | 1 | _ | |a Brugger, Jana |0 P:(DE-Juel1)145687 |b 7 |u fzj |
| 700 | 1 | _ | |a Liang, Zongcun |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Shen, Hui |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Finger, Friedhelm |0 P:(DE-Juel1)130238 |b 10 |u fzj |
| 700 | 1 | _ | |a Rau, Uwe |0 P:(DE-Juel1)130285 |b 11 |u fzj |
| 700 | 1 | _ | |a Ding, Kaining |0 P:(DE-Juel1)130233 |b 12 |u fzj |
| 773 | _ | _ | |a 10.1021/acsami.0c06637 |g p. acsami.0c06637 |0 PERI:(DE-600)2467494-1 |p 29986–29992 |t ACS applied materials & interfaces |v 20 |y 2020 |x 1944-8252 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/877693/files/Conductive%20SiC%20for%20hydrogenation-Preprint.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:877693 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)178049 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)162141 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)174415 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130263 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)169946 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)164477 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)145687 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)130238 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)130285 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)130233 |
| 913 | 1 | _ | |a DE-HGF |b Energie |l Energieeffizienz, Materialien und Ressourcen |1 G:(DE-HGF)POF3-110 |0 G:(DE-HGF)POF3-113 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Methods and Concepts for Material Development |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Energie |l Erneuerbare Energien |1 G:(DE-HGF)POF3-120 |0 G:(DE-HGF)POF3-121 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Solar cells of the next generation |x 1 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-01-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-05 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL MATER INTER : 2018 |d 2020-01-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-05 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-05 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-05 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2018 |d 2020-01-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-05 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)HNF-20170116 |k HNF |l Helmholtz - Nanofacility |x 1 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
| 980 | _ | _ | |a I:(DE-Juel1)HNF-20170116 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|