000877712 001__ 877712
000877712 005__ 20220930130243.0
000877712 0247_ $$2doi$$a10.1186/s12302-020-00367-w
000877712 0247_ $$2ISSN$$a0934-3504
000877712 0247_ $$2ISSN$$a1865-5084
000877712 0247_ $$2ISSN$$a2190-4707
000877712 0247_ $$2ISSN$$a2190-4715
000877712 0247_ $$2Handle$$a2128/25319
000877712 0247_ $$2altmetric$$aaltmetric:85056862
000877712 0247_ $$2WOS$$aWOS:000546773500001
000877712 037__ $$aFZJ-2020-02415
000877712 082__ $$a610
000877712 1001_ $$0P:(DE-Juel1)168265$$aSun, Yajie$$b0$$eCorresponding author
000877712 245__ $$aCritical accumulation of fertilizer-derived uranium in Icelandic grassland Andosol
000877712 260__ $$aHeidelberg$$bSpringer$$c2020
000877712 3367_ $$2DRIVER$$aarticle
000877712 3367_ $$2DataCite$$aOutput Types/Journal article
000877712 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1595248055_12756
000877712 3367_ $$2BibTeX$$aARTICLE
000877712 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877712 3367_ $$00$$2EndNote$$aJournal Article
000877712 520__ $$aLong-term phosphorus (P) fertilizer application can lead to an accumulation of uranium (U) in agricultural soil, potentially posing risks on the environment and human health. In this study, we found that such risks could be severe in two long-term grasslands (Andosol) in Iceland (Sámstaðir and Geitasandur) after about 50 years of P fertilization. At Sámstaðir, where P fertilizers were applied at an annual rate of 39.3 kg ha−1 year−1, the soil U concentration increased from 0.65 mg kg−1 in the unfertilized soil to 6.9 mg kg−1 in the fertilized surface soil (0–5 cm). At Geitasandur with P fertilization rate at 78.6 kg ha−1 year−1, the soil U concentration reached 15 mg kg−1. The average annual U accumulation rates were 130 and 310 µg kg−1 year−1, respectively. These values were larger, by up to a factor of ten, than any previously reported rates of fertilizer-derived U accumulation. However, the U concentration in one of the applied P fertilizers was 95 mg U kg−1 fertilizer, similar to the median value of those reported in previous studies, and thus unlikely to be the only factor leading to the high U accumulation rates. By contrast, as our Andosols had low bulk density within a range of 0.2 to 0.5 g cm−3, the annual U inputs to the 0–5 cm soil were 19 g ha−1 year−1 and 32 g ha−1 year−1 at the two sites, respectively, within the range of to-date reported values in agricultural systems. In addition, we found that U was mostly retained in the surface soil rather than mobilizing to deeper soil. This was likely due to the fact that the Andosols were rich in organic matter which promoted U retention. Therefore, the observed high U accumulation rates were a result of the combination of (i) the large amounts of the applied P fertilizers and (ii) the soil properties of the Andosols with low bulk density and elevated organic matter content concentrating U in the upper surface soil. Our study shows that agricultural production systems on Andosols may have already suffered from severe U contamination due to P fertilization. We are therefore calling for future checks and regulations on P fertilizer-related soil U accumulation in these and certain comparable agroecosystems.
000877712 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000877712 588__ $$aDataset connected to CrossRef
000877712 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b1$$ufzj
000877712 7001_ $$0P:(DE-HGF)0$$aGudmundsson, Thorstein$$b2
000877712 7001_ $$0P:(DE-Juel1)138881$$aWu, Bei$$b3$$ufzj
000877712 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b4$$ufzj
000877712 773__ $$0PERI:(DE-600)2593962-2$$a10.1186/s12302-020-00367-w$$gVol. 32, no. 1, p. 92$$n1$$p92$$tEnvironmental sciences Europe$$v32$$x0934-3504$$y2020
000877712 8564_ $$uhttps://juser.fz-juelich.de/record/877712/files/Invoice_6106383105.pdf
000877712 8564_ $$uhttps://juser.fz-juelich.de/record/877712/files/Invoice_6106383105.pdf?subformat=pdfa$$xpdfa
000877712 8564_ $$uhttps://juser.fz-juelich.de/record/877712/files/document%283%29.pdf$$yOpenAccess
000877712 8564_ $$uhttps://juser.fz-juelich.de/record/877712/files/document%283%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877712 8767_ $$86106383105$$92020-06-25$$d2020-07-08$$eAPC$$jZahlung erfolgt$$pESEU-D-20-00057$$zBelegnr. 1200154685
000877712 909CO $$ooai:juser.fz-juelich.de:877712$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000877712 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168265$$aForschungszentrum Jülich$$b0$$kFZJ
000877712 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b1$$kFZJ
000877712 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138881$$aForschungszentrum Jülich$$b3$$kFZJ
000877712 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b4$$kFZJ
000877712 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000877712 9141_ $$y2020
000877712 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11
000877712 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11
000877712 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-11
000877712 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-11
000877712 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877712 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-01-11
000877712 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-11
000877712 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-11
000877712 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11
000877712 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11
000877712 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-11
000877712 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877712 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-11
000877712 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-11
000877712 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENVIRON SCI EUR : 2018$$d2020-01-11
000877712 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-11
000877712 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENVIRON SCI EUR : 2018$$d2020-01-11
000877712 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11
000877712 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000877712 980__ $$ajournal
000877712 980__ $$aVDB
000877712 980__ $$aUNRESTRICTED
000877712 980__ $$aI:(DE-Juel1)IBG-3-20101118
000877712 980__ $$aAPC
000877712 9801_ $$aAPC
000877712 9801_ $$aFullTexts