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Abstract 

Long-term phosphorus (P) fertilizer application can lead to an accumulation of uranium (U) in agricultural soil, poten-
tially posing risks on the environment and human health. In this study, we found that such risks could be severe in 
two long-term grasslands (Andosol) in Iceland (Sámstaðir and Geitasandur) after about 50 years of P fertilization. At 
Sámstaðir, where P fertilizers were applied at an annual rate of 39.3 kg ha−1  year−1, the soil U concentration increased 
from 0.65 mg kg−1 in the unfertilized soil to 6.9 mg kg−1 in the fertilized surface soil (0–5 cm). At Geitasandur with P 
fertilization rate at 78.6 kg ha−1  year−1, the soil U concentration reached 15 mg kg−1. The average annual U accumula-
tion rates were 130 and 310 µg kg−1  year−1, respectively. These values were larger, by up to a factor of ten, than any 
previously reported rates of fertilizer-derived U accumulation. However, the U concentration in one of the applied 
P fertilizers was 95 mg U  kg−1 fertilizer, similar to the median value of those reported in previous studies, and thus 
unlikely to be the only factor leading to the high U accumulation rates. By contrast, as our Andosols had low bulk den-
sity within a range of 0.2 to 0.5 g cm−3, the annual U inputs to the 0–5 cm soil were 19 g ha−1  year−1 and 32 g ha−1 
 year−1 at the  two sites, respectively, within the range of to-date reported values in agricultural systems. In addition, 
we found that U was mostly retained in the surface soil rather than mobilizing to deeper soil. This was likely due to 
the fact that the Andosols were rich in organic matter which promoted U retention. Therefore, the observed high U 
accumulation rates were a result of the combination of (i) the large amounts of the applied P fertilizers and (ii) the soil 
properties of the Andosols with low bulk density and elevated organic matter content concentrating U in the upper 
surface soil. Our study shows that agricultural production systems on Andosols may have already suffered from severe 
U contamination due to P fertilization. We are therefore calling for future checks and regulations on P fertilizer-related 
soil U accumulation in these and certain comparable agroecosystems.
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Background
Phosphorus (P) fertilizers are primarily derived from 

phosphate rocks, which, however, contain various lev-

els of uranium (U) [1–3]. �e majority (80–90%) of U is 

transferred to the final fertilizer products during min-

eral processing [4]. �erefore, U can accumulate in 

agricultural soil following prolonged P fertilizer appli-

cation [5–9]. After this risk being first mentioned by 

Rothbaum et  al. [10], the consensus has been reached 

that P fertilizer-derived U accumulates in the topsoil 

of agricultural fields [5–11]. Chemical toxicity of U is 

of greater concern than its radiotoxicity, due to the low 

intrinsic specific radioactivity of 238U [12]. �e most sen-

sitive adverse effect of U on human being is chemically 

induced toxicity to the kidney via food and water intake 

[13]. Since the transfer factor of U from soil to plant is 

below 1% [8, 14], the U uptake by plants and then enter-

ing the food chain is not a predominant health issue 

[13]. However, it has been suggested that drinking water 

can become a main source of human U intake [15, 16]. 

A number of studies indicate the transfer of fertilizer-

derived U to water bodies [16–19].
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Despite potential negative impacts of U on human being 

and the environment, there still is a lack of regulations on 

the limitation of U in P fertilizers both at the regional and 

global scales. Worldwide, Canada, rich in U resources and 

with a long history of U exploration, mining and genera-

tion of nuclear power [20], is the only country that has 

implemented a soil quality guideline of 23 mg U  kg−1 soil 

for agricultural land use to protect the human and envi-

ronmental health [21]. However, internationally there still 

are no limitations for U content in fertilizers [22]. Yet, an 

increasing number of studies report an accumulation of 

fertilizer-derived U in agricultural soils or in groundwater 

[16, 19, 23]. �e reported accumulation rates of fertilizer-

derived U in soil are in the range of 0–130 µg kg−1  year−1 

with median value of 7.65 µg kg−1  year−1 [24]. Uranium 

concentrations in soil have been reported to range from 

0.3 to 11.7 mg kg−1 with an average background concen-

tration of 2 mg kg−1 [21]. �erefore, the fertilizer-derived 

U accumulation can become a cumulative issue after 

hundreds of years of mineral P fertilization. Many stud-

ies have confirmed that fertilizer-derived U will increase 

soil U contents, though only marginally and not necessar-

ily to a degree that it significantly increases U exposure to 

human being via food or drinks [24]. As a result, current 

pressure on governmental legislations is low to set up a 

guideline value for U in fertilizers.

Volcanic soils (Andosols), covering approximately 124 

million hectares of the land surface, are rich in organic 

matter and mineral nutrients, have high water-holding 

capacity, and thus are considered to be important agri-

cultural soil resources in, e.g., Japan, Iceland, and New 

Zealand, as well as in several tropical areas [25]. However, 

Andosols are also usually characterized by low inherent P 

availability, thus requiring higher amounts of P fertilizers 

than many other soils [9, 26, 27]. Extensive P fertilization 

on these soils may on the other hand induce high U accu-

mulation that eventually poses risks on the environment 

and human health. �erefore, in this study, we aimed to 

evaluate high fertilization rates on Andosols with respect 

to fertilizer-induced U accumulation. We thus inves-

tigated U accumulation in Andosols at two long-term 

experimental sites in Iceland, where P fertilizers had been 

applied for about 50 years on permanent grasslands. Our 

results will provide useful information on future fertiliza-

tion strategies on Andosols.

Materials and methods
Soil samples were taken from two long-term perma-

nent grasslands in Sámstaðir and Geitasandur, Iceland, 

respectively (Table  1). �e Sámstaðir experimental 

site was established in 1950 and lasted until 2004. �e 

site is located on drained Histic Andosols, overlying 

a 3 m-thick Histosol, with numerous volcanic ash lay-

ers and a high input of aeolian material. For this study, 

we used soil samples taken from the plots that received 

mineral P fertilizers at an annual rate of 39.3  kg  ha−1 

Table 1 Soil properties, fertilizer annually applied, sampling depth at  Sámstaðir and  Geitasandur long-term 

experimental sites

a
 0 kg ha−1  year−1 was applied from 1958–1972; 79.6 kg ha−1  year−1 was applied from 1973–2007. 55.7 kg ha−1  year−1 was the average P application rate in 1958-2007

b
 39.3 kg ha−1  year−1 was applied from 1958–1972; 79.6 kg ha−1  year−1 was applied from 1973–2007. 67.5 kg ha−1  year−1 was the average P application rate in 

1958–2007

Treatment ID Fertilizer annually applied (kg ha−1) Soil depth Total C Total N Bulk density

N P K (cm) % DM % DM g  cm−3

Sámstaðir (1950–2004) Histic Andosol

 0P (a) 70 0 75 0–5 15.9 1.19 0.34

5–10 9.7 0.8 0.45

 39P (e) 70 39.3 75 0–5 14.6 1.11 0.34

5–10 8.8 0.74 0.45

Geitasandur (1958–2007) Vitric Andosol

 0P (a1) 120 0 80 0–5 9.5 0.62 0.49

5–10 2.2 0.17 1

 39P (d1) 120 39.3 80 0–5 16.7 0.98 0.27

5–10 2.5 0.18 0.94

 80P (a2) 120 78.9a (55.7) 80 0–5 22.5 1.22 0.2

5–10 3.5 0.23 0.84

 80P (d2) 120 78.9b (67.5) 80 0–5 22.1 1.16 0.23

5–10 3 0.2 0.89
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(39P/e treatment) and plots without P fertilization 

(0P/a treatment). Fifteen to twenty soil cores were col-

lected from each plot and mixed to a representative 

sample. Each treatment had 4 replicates.

�e Geitasandur experiment started in 1958 and 

lasted until 2007, which was run on freely drained 

Vitric Andosols. �e site was poorly vegetated at the 

start of the experiment, but a 10-cm-thick fibrous root 

mat was formed toward the end of the experimental 

period. From 1958 to 1972, a part of the site received 

P fertilizers at an annual rate of 39.3 (= 39P/d treat-

ment) kg ha−1, while the other part received no P fer-

tilizers (= 0P/a treatment). Each treatment had three 

field replicates. In 1973, the original 5 × 10  m2 plots 

were split into two 2.5  ×  10  m2 sup-plots, with one 

sub-plot continuing with the same P application (a1 = 0 

or d1 = 39.3  kg  ha−1  year−1), and the other sub-plot 

receiving 79.6  kg P  ha−1  year−1 (a2 or d2 = 80P treat-

ment). �erefore, there were three field replicates for 

each treatment (i.e., a1, a2, d1, d2) after 1973 (Table 1), 

which we used in this study. �ree soil cores were col-

lected from each plot and sub-plot.

Soil samples were taken from each of these plots at 

the two sites with a 20-cm-long cylindrical auger, with 

an inner diameter of 3.1 cm. Each soil core was further 

cut into 0–5, 5–10, and 10–20  cm depth intervals. �is 

study used the soils from the depth intervals of 0–5 

and 5–10  cm. More detailed information on these sites 

and the sampling procedures can be found in Table  1 

and the studies of Gudmundsson et al. [28, 29]. A sam-

ple of superphosphate fertilizer applied at the Iceland 

experiment sites was collected and analyzed for its U 

concentration.

Soil samples were air-dried and passed through a 2 mm 

sieve before analysis. About 0.05  g of each soil sample 

was digested with a mixture of 3  ml distilled ultrapure 

concentrated  HNO3 (68%) and 1  ml  H2O2 (30%, p.a.) 

in a pressurized microwave-assisted digestion system 

(UltraWave, Milestone Srl, Italy). �e non-HF micro-

wave-assisted digestion method in this study was per-

formed according to the protocol recommended by the 

United States Environmental Protection Agency method 

3051 [30], which has been widely applied for elemen-

tal analyses in soils. �is method can extract about 80% 

of the total U in this study, leaving the sequestered U in 

structural silicate minerals as the residue [31, 32]. �ree 

analytical replicates were carried out for each soil sample. 

Uranium and P concentration were determined by induc-

tively coupled plasma mass spectrometry (ICP-MS, Agi-

lent 7900, Germany). �e analysis of the fertilizer sample 

was performed in the same way as the soil samples.

�e differences in U concentration in various treat-

ments were analyzed by one-way ANOVA with a 

significance level of p < 0.05. �e relationships between P 

and U concentrations were examined by linear regression 

model fitting.

Annual U accumulation rates were calculated as:

where NP-fertilized was the number of years when P ferti-

lizers were applied to the soil, and  UP-fertilized and  UControl 

were U concentrations in the soils with and without P 

fertilizers, respectively.

Fertilizer-derived U accumulation

�e U concentration in one of the applied P fertilizers 

at the two sites was 95 mg U  kg−1 fertilizer. After appli-

cation for about 50 years of such a fertilizer at a rate of 

39.3 kg P ha−1, soil U concentrations in the surface soil 

(0–5  cm) increased by 7.3  mg  kg−1 and 6.1  mg  kg−1 at 

Geitasandur and Sámstaðir, respectively. Moreover, the U 

concentrations in the surface soil of the 80P treatments 

exceeded 15 mg kg−1 and were almost twice that of the 

39P treatments in Geitasandur (Fig. 1a).
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Fig. 1 Uranium concentrations (a) and stocks (b) in Andosol soils 
with the treatments of different P application rates at Sámstaðir and 
Geitasandur long-term experimental sites in Iceland. Error bars are the 
standard deviation of treatment replicates. Different letters indicate 
significant differences among the treatments with a significant level 
of p < 0.05
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No significant difference was found in U concentrations 

between 0–5 cm and 5–10 cm soil depth in the controls 

at both sites. However, in the 39P and 80P treatments, U 

concentrations increased not only in the 0–5 cm but also 

in the 5–10 cm soil depth, increasing by 1 and 2 mg kg−1 

for 39P and 80P treatments, respectively (Fig. 1a).

�e U stocks in the top 0–5  cm soil were signifi-

cantly smaller in the control than in the P fertilization 

treatments, so were the U stocks in the 5–10  cm depth 

(Fig.  1b). In the control, there was no significant dif-

ference in U stock between 0–5  cm and 5–10  cm soil, 

whereas this difference was significant in the P fertilizer 

treatments both at Sámstaðir and Geitasandur (Fig. 1b). 

Compared with the control, 1.04  kg U  ha−1 had been 

added at Sámstaðir (0–5 cm) under a P application rate 

of 39.3 kg ha−1, while 0.92 and 1.55 kg U  ha−1 had been 

added at Geitasandur (0–5 cm) in the 39P and 80P treat-

ments, respectively, over a period of about 50  years 

(Fig. 1b). In the soil depth of 0–5 cm, the final fertilizer-

derived U input was about ten times that in the con-

trol. In the course of the experiments at both sites, over 

60% of fertilizer-derived U had accumulated in the top 

0–5 cm soil (Table 2).

�e annual U accumulation rates (0–5  cm) were 113, 

149, 310  µg  kg−1  year−1 for the 39P (e), 39P (a1) and 

80P (a2, d2) treatments, respectively. In addition, the 

amounts of annual U input to one hectare were 19, 19 

and 32 g ha−1  year−1 (Table 2).

�e concentrations of P and U correlated signifi-

cantly in both soils (R2 > 0.7, P < 0.05; Fig.  2), confirm-

ing that the U accumulation in the grassland most likely 

coincided with P accumulation under the P fertilizer 

applications.

Discussion
Our results support the earlier findings that U accumu-

lates in agricultural soils due to P fertilization [5–7, 9]. 

However, the annual U accumulation rates found in this 

study exceeded those reported for other ecosystems so 

far. �e U accumulation rates in the top 5  cm reported 

in this study (113, 149  µg  kg−1  year−1) were far above 

the high end of the to-date reported U accumulation 

rates (2–29  µg  kg−1  year−1) for other soils with similar 

P application rates (30–45  kg  ha−1  year−1) [7, 11, 33]. 

Even though a broad range of U accumulation rates 

(0–130.6 µg kg−1  year−1) were found in previous studies 

[5–11, 16, 24, 33–35], none of them reached the values 

found in the present study (Table 2).

Clearly, the amount of the applied P fertilizers is one of 

the critical factors for the amount of U that accumulates 

in soils. In our study, U accumulation rates increased with 

increasing amounts of P fertilization. �e P application 

Table 2 Uranium accumulation rates and U inputs at Sámstaðir and Geitasandur long-term experiment sites

Soil depth Sámstaðir Geitasandur

39P (e) 39P (a1) 80P (a2) 80P (d2)

0–5 cm

 Annual accumulation rate (µg kg−1  year−1) 113 149 319 301

 U input (g ha−1year−1) 19 19 30.3 33.2

 U in applied P fertilizers (mg U  kg−1 P) 489 482 545 492

5–10 cm

 Annual accumulation rate (µg kg−1  year−1) 16 27 37 45

 U input (g ha−1year−1) 4 12 15 20

0–10 cm

 Annual accumulation rate (µg kg−1  year−1) 58 52 87 94

  U input (g ha−1year−1) 23 31 45 53

 U in applied P fertilizers (mg U  kg−1 P) 580 794 811 782

Fig. 2 Relationships between P and U concentrations in soil depth of 
0–5 cm and 5–10 cm in Sámstaðir and Geitasandur
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rate (79 kg P  ha−1  yr−1) at Geitasandur was twice or three 

times that typically applied to non-Andosols, thus lead-

ing to the higher U accumulation rates. A high U accu-

mulation rate of 130.6 µg kg−1  year−1 was also found in 

an Andosol in a long-term experiment in Japan with an 

annual P application of 74.3 kg ha−1  year−1 [9] (Table 3). 

Accumulation rates of U reported in Andosols of New 

Zealand were 15–67 µg kg−1  year−1 with a P application 

range of 19.7–100 kg ha−1  year−1 [6, 7] (Table 3). Risks of 

fertilizer-derived U should thus be specifically considered 

on Andosols.

Uranium concentration in the applied P fertilizer is 

another factor determining the U accumulation rate [5, 

36]. When U concentration in the applied P fertilizer is 

low, low U accumulation rate can also occur in Andosols. 

Takeda et  al. (2006) found a relatively low U accumula-

tion rate of 4.2 µg U  kg−1  year−1 in an Andosol in Japan 

in spite of a high P application of 65 kg ha−1  year−1 [5] 

(Table 3). �is was attributed to the low U concentration 

(31  mg U  kg−1 fertilizer) in the applied superphosphate 

[5]. �e differences in U concentrations of P fertilizers 

are attributed to the variability of U concentrations in 

different phosphate rocks used for P fertilizer produc-

tion. In general, igneous phosphate rocks (e.g., from 

Russia) usually contain less U (2.5–40  mg  kg−1, mean 

value 14.4  mg  kg−1) than sedimentary rocks (e.g., from 

Morocco) (57–245 mg kg−1) [1, 36]. In addition, U con-

centrations in sedimentary phosphate rocks differ in 

various deposition environments [1, 3, 36]. �e phos-

phate rocks imported to Europe are predominately from 

Morocco (35.1%), Russia (31.6%), Algeria (12.3%) and 

Israel (7.5%) [37]. As these phosphate rocks are either 

igneous or sedimentary, their U concentrations would 

also vary in a wide range. �erefore, for soils like Ando-

sols which require large amounts of P fertilizers, select-

ing fertilizer products low in U should be a sustainable 

way to both ensure crop yields and minimize fertilizer-

derived U accumulation.

To evaluate the P fertilizer quality regarding U concen-

tration, we analyzed a P fertilizer sample applied at the 

two sites. Its U concentration (95  mg U  kg−1 fertilizer) 

was at the middle level in the range of previously reported 

values (21–272  mg  kg−1 fertilizer) [38]. However, as 

the fertilizers applied during the 50  years also included 

other superphosphates with unknown U concentra-

tions, we in addition estimated an average U concentra-

tion per kg P using the total increased U stock divided by 

the total amounts of the applied P, which resulted in 580 

and 795  mg U  kg−1 P for Sámastaðir and Geitasandur, 

respectively. Since superphosphates contain about 8.7% P, 

the U concentration per kg fertilizer was then 50.5 and 

69.2 mg U  kg−1 fertilizer, respectively. Again, these values 

were within the range of the reported U concentrations 

in P fertilizers. Nevertheless, the application of these fer-

tilizers that contained U in a normal range resulted in a 

remarkable increase of soil U concentrations at our study 

sites.

It is worth noting that the average annual U inputs 

were 19 and 32 g ha−1  year−1 when P was applied at a rate 

of 39.3 and 78.9 kg ha−1  year−1, respectively. �ese values 

were within the range of previously reported values (8.6–

47 kg ha−1  year−1) [5, 39, 40]. Our soils thus exhibited a 

characteristic U accumulation with high accumulation 

rates but meanwhile with the moderate annual U inputs. 

We attribute this observation to the low bulk densities 

of our Andosols (0.2–0.5  g  cm−3 in the 0–5  cm soils). 

Compared with non-Andosols, such low bulk densities 

resulted in a lower total weight of the soil within a given 

area and depth, thus increasing the U concentrations and 

the U accumulation rates. In addition, Andosols usually 

exhibit elevated contents of organic matter [27], which 

promote the retention of U in the very surface soil [23]. 

Besides, no tillage for such a long period of fertilization 

also contributed the high U concentration in the top 

5 cm of those two fields.

Conclusions
In this study, we report two cases of high fertilizer-

derived U accumulations at the long-term experi-

ment sites in Iceland (Sámstaðir and Geitasandur). �is 

Table 3 To-date reported U accumulation rates in Andosols

Country Experiment site 
(Andosols)

P application rate  
(kg ha−1  year−1)

U accumulation rate  
(µg kg−1  year−1)

Reference

Japan Fujisaka Branch 61 4.2 Takeda et al. [5]

– 74.3 130.6 Yamaguchi et al. [9]

New Zealand Taupo 19.7 15 Taylor [6]

Hinemaiai 98 47 Taylor [6]

Whatawhata 30 0 Schipper et al. [7]

50 42

100 67
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resulted from a combined effect of two main factors. 

First, large amounts of P fertilizers were applied to these 

Icelandic Andosols to maintain grassland productivity 

because of inherent low P availability in Andosols. Sec-

ond, the low bulk density and high organic matter con-

tent in Andosols effectively concentrated U in the upper 

surface soil. �ese two factors also play a role in agricul-

ture systems other than Andosols, e.g., on former peat-

lands, raising the possibility that more unreported areas 

of agricultural land could contain U with a concentration 

close to or even higher than the (sole) soil quality guide-

line of 23 mg U  kg−1. �erefore, for these types and other 

agricultural ecosystems requiring high amounts of P fer-

tilization, proper selection of those P fertilizers low in U 

content will therefore be particularly important for sus-

tainable land use.
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