000877718 001__ 877718
000877718 005__ 20240711085636.0
000877718 0247_ $$2doi$$a10.1021/acsaem.7b00186
000877718 0247_ $$2altmetric$$aaltmetric:57423531
000877718 0247_ $$2WOS$$aWOS:000458705100061
000877718 037__ $$aFZJ-2020-02419
000877718 082__ $$a540
000877718 1001_ $$0P:(DE-Juel1)165951$$aWindmüller, Anna$$b0$$eCorresponding author
000877718 245__ $$aImpact of Fluorination on Phase Stability, Crystal Chemistry, and Capacity of LiCoMnO 4 High Voltage Spinels
000877718 260__ $$aWashington, DC$$bACS Publications$$c2018
000877718 3367_ $$2DRIVER$$aarticle
000877718 3367_ $$2DataCite$$aOutput Types/Journal article
000877718 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594127887_24596
000877718 3367_ $$2BibTeX$$aARTICLE
000877718 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877718 3367_ $$00$$2EndNote$$aJournal Article
000877718 520__ $$aFluorinated LiCoMnO4−yFy (y = 0, 0.05, 0.1) spinel electrodes, electrochemically active at 5−5.3 V versus Li/Li+, show enhanced phase purity and enhanced capacity with increasing y. We disclose the impact of fluorination on the phase purity and reversible capacity of LiCoMnO4 via joint Rietveld refinement of neutron and synchrotron powder diffraction data, combined with micro-Raman spectroscopy. It is found that fluorination stabilizes the spinel phase and hinders precipitation of Li2MnO3 as a secondary phase, which controls the cation distribution on tetrahedral and octahedral sites in spinel. That is to say, for higher fluorine content the cobalt occupancy at the tetrahedral site in spinel decreases, and the lithium occupancy increases. Accordingly, the number of lithium sites that are available for electrochemical extraction and insertion of lithium ions is raised so that the capacity isincreased. Further investigation of the lithium ion diffusion by means of cyclic voltammetry at different scan rates and the application of the Randles−Sevcik equation were carried out to investigate the extent of capacity enhancement due to faster lithium ion diffusion in the high voltage region.
000877718 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000877718 536__ $$0G:(DE-82)BMBF-03SF0477A$$aBMBF-03SF0477A - DESIREE : Defektspinelle als Hochenergie- und Hochleistungsmaterialien zur elektrochemischen Energiespeicherung, Teilprojekte: Partikelmikrostrukturierung und Modellsysteme, Makroskopische und atomistische Analyse von elektrochemischen Vorgängen (BMBF-03SF0477A)$$cBMBF-03SF0477A$$x1
000877718 588__ $$aDataset connected to CrossRef
000877718 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000877718 7001_ $$00000-0002-3543-463X$$aBridges, Craig A.$$b1
000877718 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b2
000877718 7001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b3$$ufzj
000877718 7001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b4
000877718 7001_ $$00000-0002-5186-4461$$aVeith, Gabriel M.$$b5
000877718 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b6
000877718 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b7
000877718 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b8$$ufzj
000877718 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.7b00186$$gVol. 1, no. 2, p. 715 - 724$$n2$$p715 - 724$$tACS applied energy materials$$v1$$x2574-0962$$y2018
000877718 8564_ $$uhttps://juser.fz-juelich.de/record/877718/files/acsaem.7b00186.pdf$$yRestricted
000877718 8564_ $$uhttps://juser.fz-juelich.de/record/877718/files/acsaem.7b00186.pdf?subformat=pdfa$$xpdfa$$yRestricted
000877718 909CO $$ooai:juser.fz-juelich.de:877718$$pVDB
000877718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165951$$aForschungszentrum Jülich$$b0$$kFZJ
000877718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b2$$kFZJ
000877718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich$$b3$$kFZJ
000877718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich$$b4$$kFZJ
000877718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b6$$kFZJ
000877718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b7$$kFZJ
000877718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b8$$kFZJ
000877718 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000877718 9141_ $$y2020
000877718 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-09
000877718 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-09
000877718 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-01-09
000877718 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-09
000877718 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000877718 980__ $$ajournal
000877718 980__ $$aVDB
000877718 980__ $$aI:(DE-Juel1)IEK-1-20101013
000877718 980__ $$aUNRESTRICTED
000877718 981__ $$aI:(DE-Juel1)IMD-2-20101013