001     877718
005     20240711085636.0
024 7 _ |a 10.1021/acsaem.7b00186
|2 doi
024 7 _ |a altmetric:57423531
|2 altmetric
024 7 _ |a WOS:000458705100061
|2 WOS
037 _ _ |a FZJ-2020-02419
082 _ _ |a 540
100 1 _ |a Windmüller, Anna
|0 P:(DE-Juel1)165951
|b 0
|e Corresponding author
245 _ _ |a Impact of Fluorination on Phase Stability, Crystal Chemistry, and Capacity of LiCoMnO 4 High Voltage Spinels
260 _ _ |a Washington, DC
|c 2018
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594127887_24596
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fluorinated LiCoMnO4−yFy (y = 0, 0.05, 0.1) spinel electrodes, electrochemically active at 5−5.3 V versus Li/Li+, show enhanced phase purity and enhanced capacity with increasing y. We disclose the impact of fluorination on the phase purity and reversible capacity of LiCoMnO4 via joint Rietveld refinement of neutron and synchrotron powder diffraction data, combined with micro-Raman spectroscopy. It is found that fluorination stabilizes the spinel phase and hinders precipitation of Li2MnO3 as a secondary phase, which controls the cation distribution on tetrahedral and octahedral sites in spinel. That is to say, for higher fluorine content the cobalt occupancy at the tetrahedral site in spinel decreases, and the lithium occupancy increases. Accordingly, the number of lithium sites that are available for electrochemical extraction and insertion of lithium ions is raised so that the capacity isincreased. Further investigation of the lithium ion diffusion by means of cyclic voltammetry at different scan rates and the application of the Randles−Sevcik equation were carried out to investigate the extent of capacity enhancement due to faster lithium ion diffusion in the high voltage region.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |a BMBF-03SF0477A - DESIREE : Defektspinelle als Hochenergie- und Hochleistungsmaterialien zur elektrochemischen Energiespeicherung, Teilprojekte: Partikelmikrostrukturierung und Modellsysteme, Makroskopische und atomistische Analyse von elektrochemischen Vorgängen (BMBF-03SF0477A)
|0 G:(DE-82)BMBF-03SF0477A
|c BMBF-03SF0477A
|x 1
588 _ _ |a Dataset connected to CrossRef
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Bridges, Craig A.
|0 0000-0002-3543-463X
|b 1
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 2
700 1 _ |a Lobe, Sandra
|0 P:(DE-Juel1)161444
|b 3
|u fzj
700 1 _ |a Dellen, Christian
|0 P:(DE-Juel1)158085
|b 4
700 1 _ |a Veith, Gabriel M.
|0 0000-0002-5186-4461
|b 5
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 6
700 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 7
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 8
|u fzj
773 _ _ |a 10.1021/acsaem.7b00186
|g Vol. 1, no. 2, p. 715 - 724
|0 PERI:(DE-600)2916551-9
|n 2
|p 715 - 724
|t ACS applied energy materials
|v 1
|y 2018
|x 2574-0962
856 4 _ |u https://juser.fz-juelich.de/record/877718/files/acsaem.7b00186.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/877718/files/acsaem.7b00186.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:877718
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165951
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161444
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)158085
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-09
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21