001     877719
005     20240709081918.0
024 7 _ |a 10.1080/10667857.2020.1746539
|2 doi
024 7 _ |a 0887-1949
|2 ISSN
024 7 _ |a 1066-7857
|2 ISSN
024 7 _ |a 1753-5557
|2 ISSN
024 7 _ |a 2128/25890
|2 Handle
024 7 _ |a WOS:000538739800001
|2 WOS
037 _ _ |a FZJ-2020-02420
082 _ _ |a 600
100 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 0
|e Corresponding author
245 _ _ |a All-ceramic Li batteries based on garnet structured Li 7 La 3 Zr 2 O 12
260 _ _ |a London
|c 2020
|b Taylor and Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602771359_1063
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a All-ceramic Li batteries (CLBs) are expected as next generation energy storage devices because of their potential to have higher energy density and safety than nowadays Li-ion batteries. Garnet structured Li7La3Zr2O12 (LLZO) plays an important role on CLB developments due to its fast Li-ion conductivity, intrinsic stability toward Li and high chemical and electrochemical stabilities. After a decade of researches, many problems have been answered for LLZO-based CLB developments but still numerous challenges left to be solved. This review presents the latest efforts on the development of LLZO based CLBs, which covers the advances in LLZO crystal structure to increase its ionic conductivity and progresses in the use of Li as the electrode, regarding to its intrinsic chemical stability toward Li and interface elaboration for allowing Li dendrite suppression. On the positive electrode developments, chemical compatibility of various active materials and strategies to circumvent the incompatibility issue at high sintering temperatures are inspected.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Yu, Shicheng
|0 P:(DE-Juel1)161141
|b 1
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 2
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 3
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 4
773 _ _ |a 10.1080/10667857.2020.1746539
|g p. 1 - 19
|0 PERI:(DE-600)2035155-0
|n 9-10
|p 656-674
|t Materials technology
|v 35
|y 2020
|x 1753-5557
856 4 _ |y Published on 2020-05-22. Available in OpenAccess from 2021-05-22.
|u https://juser.fz-juelich.de/record/877719/files/All-ceramic%20Li%20batteries%20based%20on%20garnet%20structured%20Li%207%20La%203%20Zr%202%20O%2012-....pdf
856 4 _ |y Published on 2020-05-22. Available in OpenAccess from 2021-05-22.
|x pdfa
|u https://juser.fz-juelich.de/record/877719/files/All-ceramic%20Li%20batteries%20based%20on%20garnet%20structured%20Li%207%20La%203%20Zr%202%20O%2012-....pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877719
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-15
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MATER TECHNOL : 2018
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-15
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-15
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-15
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-15
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21