000877729 001__ 877729
000877729 005__ 20240709094317.0
000877729 0247_ $$2doi$$a10.1016/j.fusengdes.2020.111610
000877729 0247_ $$2ISSN$$a0920-3796
000877729 0247_ $$2ISSN$$a1873-7196
000877729 0247_ $$2Handle$$a2128/25157
000877729 0247_ $$2WOS$$aWOS:000552963400015
000877729 037__ $$aFZJ-2020-02427
000877729 082__ $$a530
000877729 1001_ $$0P:(DE-HGF)0$$aRichou, M.$$b0$$eCorresponding author
000877729 245__ $$aPerformance assessment of thick W/Cu graded interlayer for DEMO divertor target
000877729 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000877729 3367_ $$2DRIVER$$aarticle
000877729 3367_ $$2DataCite$$aOutput Types/Journal article
000877729 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605539542_2433
000877729 3367_ $$2BibTeX$$aARTICLE
000877729 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877729 3367_ $$00$$2EndNote$$aJournal Article
000877729 520__ $$aThe development of a divertor target for DEMO is of great importance, being able to sustain the harsh environment that is imposed on this component. To fulfill the loading requirements, different concepts were developed within the EUROfusion WPDIV project. The baseline concept is based on the ITER divertor target W-monoblock design. It is made of tungsten as armour material, CuCrZr as structural material and Cu-OFHC as compliant layer. One of the proposed alternative concepts aims to minimize the stress at interfaces by replacing the thick copper interlayer by W/Cu functionally graded material (FGM). In this study, the FGM interlayer, with a thickness of 500 μm, is composed of stacked elementary layers with the following three compositions: 25 vol.%W + 75 vol.%Cu, 50 vol.%W + 50 vol.%Cu, 75 vol.%W + 25 vol.%Cu. Several FGM interlayers were studied. In total three monoblock type mock-ups were manufactured. This paper describes the steps needed to manufacture mock-ups and characterization of elementary layers (composition, porosity, Young’s modulus). HHF tests applying up to 1000 cycles at 20 MW/m² and sub-sequent post-mortem examinations were performed to qualify the concept performance.
000877729 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000877729 588__ $$aDataset connected to CrossRef
000877729 7001_ $$0P:(DE-HGF)0$$aGallay, F.$$b1
000877729 7001_ $$0P:(DE-HGF)0$$aBöswirth, B.$$b2
000877729 7001_ $$0P:(DE-HGF)0$$aChu, I.$$b3
000877729 7001_ $$0P:(DE-HGF)0$$aDose, G.$$b4
000877729 7001_ $$0P:(DE-HGF)0$$aGreuner, H.$$b5
000877729 7001_ $$0P:(DE-HGF)0$$aKermouche, G.$$b6
000877729 7001_ $$0P:(DE-HGF)0$$aLenci, M.$$b7
000877729 7001_ $$0P:(DE-Juel1)129751$$aLoewenhoff, Th.$$b8
000877729 7001_ $$0P:(DE-HGF)0$$aMaestracci, R.$$b9
000877729 7001_ $$0P:(DE-HGF)0$$aMeillot, E.$$b10
000877729 7001_ $$0P:(DE-HGF)0$$aMissirlian, M.$$b11
000877729 7001_ $$0P:(DE-HGF)0$$aPastor, J. Y.$$b12
000877729 7001_ $$0P:(DE-HGF)0$$aQuet, A.$$b13
000877729 7001_ $$0P:(DE-HGF)0$$aRoccella, S.$$b14
000877729 7001_ $$0P:(DE-HGF)0$$aTejado, E.$$b15
000877729 7001_ $$0P:(DE-HGF)0$$aVisca, E.$$b16
000877729 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, G.$$b17
000877729 7001_ $$0P:(DE-HGF)0$$aYou, J. H.$$b18
000877729 7001_ $$0P:(DE-Juel1)129811$$aWirtz, Marius$$b19
000877729 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/j.fusengdes.2020.111610$$gVol. 157, p. 111610 -$$p111610 -$$tFusion engineering and design$$v157$$x0920-3796$$y2020
000877729 8564_ $$uhttps://juser.fz-juelich.de/record/877729/files/L%C3%B6wenhoff%20-%20Performance%20assessment%20of%20thick%20WCu%20graded%20interlayer%20for%20DEMO%20divertor.pdf$$yPublished on 2020-04-28. Available in OpenAccess from 2022-04-28.
000877729 8564_ $$uhttps://juser.fz-juelich.de/record/877729/files/L%C3%B6wenhoff%20-%20Performance%20assessment%20of%20thick%20WCu%20graded%20interlayer%20for%20DEMO%20divertor.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-04-28. Available in OpenAccess from 2022-04-28.
000877729 909CO $$ooai:juser.fz-juelich.de:877729$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129751$$aForschungszentrum Jülich$$b8$$kFZJ
000877729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b17$$kFZJ
000877729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b19$$kFZJ
000877729 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000877729 9141_ $$y2020
000877729 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-09
000877729 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-09
000877729 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-09
000877729 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877729 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUSION ENG DES : 2018$$d2020-01-09
000877729 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-09
000877729 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-09
000877729 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-09
000877729 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-09
000877729 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-09
000877729 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-09
000877729 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-09$$wger
000877729 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-09
000877729 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000877729 9801_ $$aFullTexts
000877729 980__ $$ajournal
000877729 980__ $$aVDB
000877729 980__ $$aI:(DE-Juel1)IEK-2-20101013
000877729 980__ $$aUNRESTRICTED
000877729 981__ $$aI:(DE-Juel1)IMD-1-20101013