001     877730
005     20241127124644.0
024 7 _ |a 10.3390/en13133401
|2 doi
024 7 _ |a 2128/25248
|2 Handle
024 7 _ |a WOS:000554957900001
|2 WOS
024 7 _ |a altmetric:91903930
|2 altmetric
037 _ _ |a FZJ-2020-02428
082 _ _ |a 620
100 1 _ |a Schemme, Steffen
|0 P:(DE-Juel1)169155
|b 0
245 _ _ |a Property Data Estimation for Hemiformals, Methylene Glycols and Polyoxymethylene Dimethyl Ethers and Process Optimization in Formaldehyde Synthesis
260 _ _ |a Basel
|c 2020
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594208989_8340
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Polyoxymethylene dimethyl ethers (OMEn) are frequently discussed as alternative diesel fuels, with various synthesis routes considered. OME3–5 syntheses demand significant amounts of thermal energy due to the complex separation processes that they entail. Therefore, innovative process designs are needed. An important tool for the development of new processes is process simulation software. To ensure sound process simulations, reliable physico-chemical models and component property data are necessary. Herein we present the implementation of a state-of-the-art thermodynamic model to describe the component systems of formaldehyde-water and formaldehyde-methanol using Microsoft® Excel (2010, Microsoft Corp, Redmond, WA, USA) and Aspen Plus®, (V8.8, Aspen Tech, Bedford, MA, U.S.) determine the deviation between the calculated results and experimental literature data, and minimize the deviation by means of parameter fitting. To improve the accuracy of the estimation of the missing property data of hemiformals and methylene glycols formed from formaldehyde using group contribution methods, the normal boiling points were estimated based on molecular analogies. The boiling points of OME6-10 are determined through parameter regression in accordance with the vapor pressure equation. As an application example, an optimization of the product separation of the state-of-the-art formaldehyde synthesis is presented that helps decrease the losses of methanol and formaldehyde in flue gas and wastewater.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Meschede, Sven
|0 P:(DE-Juel1)172726
|b 1
700 1 _ |a Köller, Maximilian
|0 P:(DE-Juel1)173961
|b 2
700 1 _ |a Samsun, Remzi Can
|0 P:(DE-Juel1)207065
|b 3
700 1 _ |a Peters, Ralf
|0 P:(DE-Juel1)129902
|b 4
|e Corresponding author
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 5
773 _ _ |a 10.3390/en13133401
|g Vol. 13, no. 13, p. 3401 -
|0 PERI:(DE-600)2437446-5
|n 13
|p 3401 -
|t Energies
|v 13
|y 2020
|x 1996-1073
856 4 _ |u https://juser.fz-juelich.de/record/877730/files/Invoice_energies-838736.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/877730/files/Invoice_energies-838736.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877730/files/energies-13-03401.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/877730/files/energies-13-03401.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877730
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169155
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172726
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173961
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)207065
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129902
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGIES : 2018
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-09
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-09
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-09
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21