000877731 001__ 877731
000877731 005__ 20240712084526.0
000877731 0247_ $$2doi$$a10.1002/admi.202000366
000877731 0247_ $$2Handle$$a2128/25700
000877731 0247_ $$2altmetric$$aaltmetric:85291053
000877731 0247_ $$2WOS$$aWOS:000543730100001
000877731 037__ $$aFZJ-2020-02429
000877731 082__ $$a600
000877731 1001_ $$0P:(DE-Juel1)169644$$aHaddad, Jinane$$b0
000877731 245__ $$aAnalyzing Interface Recombination in Lead-Halide Perovskite Solar Cells with Organic and Inorganic Hole-Transport Layers
000877731 260__ $$aWeinheim$$bWiley-VCH$$c2020
000877731 3367_ $$2DRIVER$$aarticle
000877731 3367_ $$2DataCite$$aOutput Types/Journal article
000877731 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600708490_27522
000877731 3367_ $$2BibTeX$$aARTICLE
000877731 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877731 3367_ $$00$$2EndNote$$aJournal Article
000877731 520__ $$aThe interfaces between absorber and transport layers are shown to be critical for perovskite device performance. However, quantitative characterization of interface recombination has so far proven to be highly challenging in working perovskite solar cells. Here, methylammonium lead halide (CH3NH3PbI3) perovskite solar cells are studied based on a range of different hole‐transport layers, namely, an inorganic hole‐transport layer CuOx, an organic hole‐transport layer poly(triarylamine) (PTAA), and a bilayer of CuOx/PTAA. The cells are completed by a [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM)/bathocuproine/Ag electron contact. Energy levels are characterized using photoelectron spectroscopy and recombination dynamics by combining steady‐state photoluminescence and transient photoluminescence with numerical simulations. While the PTAA‐based devices hardly show any interface recombination losses and open‐circuit voltages >1.2 V, substantial losses are observed for the samples with a direct CuOx/perovskite interface. These losses are assigned to a combination of energetic misalignment at the CuOx/perovskite interface coupled with increased interface recombination velocities at the perovskite/PCBM interface.
000877731 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000877731 588__ $$aDataset connected to CrossRef
000877731 7001_ $$0P:(DE-Juel1)169731$$aKrogmeier, Benedikt$$b1
000877731 7001_ $$0P:(DE-Juel1)159235$$aKlingebiel, Benjamin$$b2
000877731 7001_ $$0P:(DE-Juel1)173073$$aKrückemeier, Lisa$$b3
000877731 7001_ $$0P:(DE-Juel1)178055$$aMelhem, Stephanie$$b4
000877731 7001_ $$0P:(DE-Juel1)169264$$aLiu, Zhifa$$b5
000877731 7001_ $$0P:(DE-Juel1)130252$$aHüpkes, Jürgen$$b6
000877731 7001_ $$0P:(DE-HGF)0$$aMathur, Sanjay$$b7
000877731 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b8$$eCorresponding author
000877731 773__ $$0PERI:(DE-600)2750376-8$$a10.1002/admi.202000366$$gp. 2000366 -$$n16$$p2000366$$tAdvanced materials interfaces$$v7$$x2196-7350$$y2020
000877731 8564_ $$uhttps://juser.fz-juelich.de/record/877731/files/admi.202000366-3.pdf$$yOpenAccess
000877731 8564_ $$uhttps://juser.fz-juelich.de/record/877731/files/admi.202000366-3.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877731 8767_ $$92020-06-16$$d2020-06-29$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$padmi.202000366
000877731 909CO $$ooai:juser.fz-juelich.de:877731$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000877731 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169644$$aForschungszentrum Jülich$$b0$$kFZJ
000877731 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169731$$aForschungszentrum Jülich$$b1$$kFZJ
000877731 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159235$$aForschungszentrum Jülich$$b2$$kFZJ
000877731 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173073$$aForschungszentrum Jülich$$b3$$kFZJ
000877731 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178055$$aForschungszentrum Jülich$$b4$$kFZJ
000877731 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169264$$aForschungszentrum Jülich$$b5$$kFZJ
000877731 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130252$$aForschungszentrum Jülich$$b6$$kFZJ
000877731 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b8$$kFZJ
000877731 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000877731 9141_ $$y2020
000877731 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000877731 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000877731 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877731 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER INTERFACES : 2018$$d2020-02-26
000877731 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000877731 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000877731 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000877731 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000877731 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877731 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000877731 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000877731 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000877731 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000877731 9801_ $$aAPC
000877731 9801_ $$aFullTexts
000877731 980__ $$ajournal
000877731 980__ $$aVDB
000877731 980__ $$aUNRESTRICTED
000877731 980__ $$aI:(DE-Juel1)IEK-5-20101013
000877731 980__ $$aAPC
000877731 981__ $$aI:(DE-Juel1)IMD-3-20101013