000877732 001__ 877732 000877732 005__ 20210130005233.0 000877732 0247_ $$2doi$$a10.1103/PhysRevLett.120.187701 000877732 0247_ $$2ISSN$$a0031-9007 000877732 0247_ $$2ISSN$$a1079-7114 000877732 0247_ $$2ISSN$$a1092-0145 000877732 0247_ $$2Handle$$a2128/25166 000877732 0247_ $$2altmetric$$aaltmetric:30593758 000877732 0247_ $$2pmid$$apmid:29775369 000877732 0247_ $$2WOS$$aWOS:000432979900036 000877732 037__ $$aFZJ-2020-02430 000877732 082__ $$a530 000877732 1001_ $$0P:(DE-Juel1)167238$$aSonntag, Jens$$b0$$eCorresponding author$$ufzj 000877732 245__ $$aImpact of Many-Body Effects on Landau Levels in Graphene 000877732 260__ $$aCollege Park, Md.$$bAPS$$c2018 000877732 3367_ $$2DRIVER$$aarticle 000877732 3367_ $$2DataCite$$aOutput Types/Journal article 000877732 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593433905_16974 000877732 3367_ $$2BibTeX$$aARTICLE 000877732 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000877732 3367_ $$00$$2EndNote$$aJournal Article 000877732 520__ $$aWe present magneto-Raman spectroscopy measurements on suspended graphene to investigate the charge carrier density-dependent electron-electron interaction in the presence of Landau levels. Utilizing gate-tunable magnetophonon resonances, we extract the charge carrier density dependence of the Landau level transition energies and the associated effective Fermi velocity vF. In contrast to the logarithmic divergence of vF at zero magnetic field, we find a piecewise linear scaling of vF as a function of the charge carrier density, due to a magnetic-field-induced suppression of the long-range Coulomb interaction. We quantitatively confirm our experimental findings by performing tight-binding calculations on the level of the Hartree-Fock approximation, which also allow us to estimate an excitonic binding energy of ≈6 meV contained in the experimentally extracted Landau level transitions energies. 000877732 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0 000877732 588__ $$aDataset connected to CrossRef 000877732 7001_ $$0P:(DE-HGF)0$$aReichardt, S.$$b1 000877732 7001_ $$0P:(DE-HGF)0$$aWirtz, L.$$b2 000877732 7001_ $$0P:(DE-Juel1)178028$$aBeschoten, Bernd$$b3$$ufzj 000877732 7001_ $$0P:(DE-HGF)0$$aKatsnelson, M. I.$$b4 000877732 7001_ $$0P:(DE-HGF)0$$aLibisch, F.$$b5 000877732 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b6$$ufzj 000877732 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.120.187701$$gVol. 120, no. 18, p. 187701$$n18$$p187701$$tPhysical review letters$$v120$$x1079-7114$$y2018 000877732 8564_ $$uhttps://juser.fz-juelich.de/record/877732/files/PhysRevLett.120.187701.pdf$$yOpenAccess 000877732 8564_ $$uhttps://juser.fz-juelich.de/record/877732/files/PhysRevLett.120.187701.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000877732 909CO $$ooai:juser.fz-juelich.de:877732$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000877732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167238$$aForschungszentrum Jülich$$b0$$kFZJ 000877732 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)167238$$aRWTH Aachen$$b0$$kRWTH 000877732 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH 000877732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178028$$aForschungszentrum Jülich$$b3$$kFZJ 000877732 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)178028$$aRWTH Aachen$$b3$$kRWTH 000877732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b6$$kFZJ 000877732 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180322$$aRWTH Aachen$$b6$$kRWTH 000877732 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000877732 9141_ $$y2020 000877732 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11 000877732 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11 000877732 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-11 000877732 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-11 000877732 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000877732 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-11 000877732 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-11 000877732 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11 000877732 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-11 000877732 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11 000877732 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000877732 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2020-01-11 000877732 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2018$$d2020-01-11 000877732 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-11 000877732 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2018$$d2020-01-11 000877732 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-11$$wger 000877732 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11 000877732 920__ $$lyes 000877732 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 000877732 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000877732 980__ $$ajournal 000877732 980__ $$aVDB 000877732 980__ $$aUNRESTRICTED 000877732 980__ $$aI:(DE-Juel1)PGI-9-20110106 000877732 980__ $$aI:(DE-82)080009_20140620 000877732 9801_ $$aFullTexts