000877732 001__ 877732
000877732 005__ 20210130005233.0
000877732 0247_ $$2doi$$a10.1103/PhysRevLett.120.187701
000877732 0247_ $$2ISSN$$a0031-9007
000877732 0247_ $$2ISSN$$a1079-7114
000877732 0247_ $$2ISSN$$a1092-0145
000877732 0247_ $$2Handle$$a2128/25166
000877732 0247_ $$2altmetric$$aaltmetric:30593758
000877732 0247_ $$2pmid$$apmid:29775369
000877732 0247_ $$2WOS$$aWOS:000432979900036
000877732 037__ $$aFZJ-2020-02430
000877732 082__ $$a530
000877732 1001_ $$0P:(DE-Juel1)167238$$aSonntag, Jens$$b0$$eCorresponding author$$ufzj
000877732 245__ $$aImpact of Many-Body Effects on Landau Levels in Graphene
000877732 260__ $$aCollege Park, Md.$$bAPS$$c2018
000877732 3367_ $$2DRIVER$$aarticle
000877732 3367_ $$2DataCite$$aOutput Types/Journal article
000877732 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593433905_16974
000877732 3367_ $$2BibTeX$$aARTICLE
000877732 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877732 3367_ $$00$$2EndNote$$aJournal Article
000877732 520__ $$aWe present magneto-Raman spectroscopy measurements on suspended graphene to investigate the charge carrier density-dependent electron-electron interaction in the presence of Landau levels. Utilizing gate-tunable magnetophonon resonances, we extract the charge carrier density dependence of the Landau level transition energies and the associated effective Fermi velocity vF. In contrast to the logarithmic divergence of vF at zero magnetic field, we find a piecewise linear scaling of vF as a function of the charge carrier density, due to a magnetic-field-induced suppression of the long-range Coulomb interaction. We quantitatively confirm our experimental findings by performing tight-binding calculations on the level of the Hartree-Fock approximation, which also allow us to estimate an excitonic binding energy of ≈6  meV contained in the experimentally extracted Landau level transitions energies.
000877732 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000877732 588__ $$aDataset connected to CrossRef
000877732 7001_ $$0P:(DE-HGF)0$$aReichardt, S.$$b1
000877732 7001_ $$0P:(DE-HGF)0$$aWirtz, L.$$b2
000877732 7001_ $$0P:(DE-Juel1)178028$$aBeschoten, Bernd$$b3$$ufzj
000877732 7001_ $$0P:(DE-HGF)0$$aKatsnelson, M. I.$$b4
000877732 7001_ $$0P:(DE-HGF)0$$aLibisch, F.$$b5
000877732 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b6$$ufzj
000877732 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.120.187701$$gVol. 120, no. 18, p. 187701$$n18$$p187701$$tPhysical review letters$$v120$$x1079-7114$$y2018
000877732 8564_ $$uhttps://juser.fz-juelich.de/record/877732/files/PhysRevLett.120.187701.pdf$$yOpenAccess
000877732 8564_ $$uhttps://juser.fz-juelich.de/record/877732/files/PhysRevLett.120.187701.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877732 909CO $$ooai:juser.fz-juelich.de:877732$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167238$$aForschungszentrum Jülich$$b0$$kFZJ
000877732 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)167238$$aRWTH Aachen$$b0$$kRWTH
000877732 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178028$$aForschungszentrum Jülich$$b3$$kFZJ
000877732 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)178028$$aRWTH Aachen$$b3$$kRWTH
000877732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b6$$kFZJ
000877732 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180322$$aRWTH Aachen$$b6$$kRWTH
000877732 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000877732 9141_ $$y2020
000877732 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11
000877732 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11
000877732 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-11
000877732 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-11
000877732 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000877732 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-11
000877732 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-11
000877732 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11
000877732 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-11
000877732 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11
000877732 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877732 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2020-01-11
000877732 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2018$$d2020-01-11
000877732 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-11
000877732 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2018$$d2020-01-11
000877732 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-11$$wger
000877732 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11
000877732 920__ $$lyes
000877732 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000877732 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000877732 980__ $$ajournal
000877732 980__ $$aVDB
000877732 980__ $$aUNRESTRICTED
000877732 980__ $$aI:(DE-Juel1)PGI-9-20110106
000877732 980__ $$aI:(DE-82)080009_20140620
000877732 9801_ $$aFullTexts