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We present magneto-Raman spectroscopy measurements on suspended graphene to investigate the

charge carrier density-dependent electron-electron interaction in the presence of Landau levels. Utilizing

gate-tunable magnetophonon resonances, we extract the charge carrier density dependence of the Landau

level transition energies and the associated effective Fermi velocity vF. In contrast to the logarithmic

divergence of vF at zero magnetic field, we find a piecewise linear scaling of vF as a function of the charge

carrier density, due to a magnetic-field-induced suppression of the long-range Coulomb interaction. We

quantitatively confirm our experimental findings by performing tight-binding calculations on the level of

the Hartree-Fock approximation, which also allow us to estimate an excitonic binding energy of ≈6 meV

contained in the experimentally extracted Landau level transitions energies.
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Many-body interactions crucially influence the elec-

tronic properties of graphene [1]. They are essential to

the understanding of such effects as unconventional quan-

tum Hall states [2,3], graphene plasmonics [4–6], or the

formation of a viscous Dirac fermion liquid [7,8]. In

particular, the long-range electron-electron interaction is

predicted to heavily modify the single-particle band struc-

ture close to the charge neutrality point (CNP), which is

described by a logarithmically divergent effective Fermi

velocity vF [9–12]. This charge carrier density (nel)-
dependent band structure renormalization at low or vanish-

ing magnetic fields was experimentally confirmed with

various different experimental techniques such as transport

measurements [13], quantum capacitance measurements

[14], angle-resolved photoemission spectroscopy (ARPES)

[15,16], and scanning tunneling spectroscopy [17,18]. Still,

very little is known about the effects of electron-electron

interaction on the band structure of graphene in the

presence of quantizing magnetic fields, i.e., Landau levels

(LLs). The only experimental [19] and theoretical [20]

studies so far focused on the scaling of the effective Fermi

velocity with magnetic field B at a fixed charge carrier

density close to the CNP. Interestingly, the extracted vF is

not in agreement with earlier experiments at low magnetic

fields [13,14] and hints toward a nondivergent behavior at

the CNP. This raises the question whether the nel-dependent
renormalization of vF and thus the many-body effects are

fundamentally different in the presence of LLs.

In this Letter, we report on extracting the renormalized

LL energies and the corresponding vF as a function of

nel by optically probing gate-tunable magnetophonon res-

onances (MPRs) in suspended graphene. Magneto-Raman

spectroscopy has successfully been used to probe inter-LL

excitations in graphene [19,21–31] and allows the study of

the electron-phonon coupling and excitation lifetimes. Most

importantly, this technique offers a suitable energy scale for

measuring the B-field-tunable LL transition energies in the

form of the Raman G mode phonon energy (≈196 meV).

Typically, such energy scales characteristic for LLs are

difficult to reach by thermally activated transport, which

is the method of choice for extracting the energy-band or vF
renormalization at a negligible B field [13].

To compare the renormalization effects at low and high B

fields, respectively, it is convenient to introduce an effective

Fermi velocity vF for high B fields, which captures the

complete renormalization of the LL energies due to many-

body effects [32]. Thus, the unique square root dependence

of the LL spectrum of massless Dirac fermions has to be

modified with a renormalized effective Fermi velocity vF,

which now depends on B, nel, and the LL index �n. The

LL spectrum including many-body interactions thus reads

ε�n ¼ �vF;nðB; nelÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eℏBn
p

. Most interestingly, our study

of magnetophonon resonances as a function of nel reveals

that vF does not scale logarithmically with nel, as is the case

for B ≈ 0 T, but rather shows a linear and thus finite

dependence. We attribute this change in behavior to the

suppression of the long-range Coulomb interaction for

distances larger than the magnetic length lB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðeBÞ
p

.

Moreover, we present a quantitative description of the

evolution of vF in the presence of LLs within a tight-

binding model [33] on the level of the Hartree-Fock

approximation, finding a near-perfect agreement with our

measurements.
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For our experimental study, we use a suspended graphene

device offering high carrier mobility, low intrinsic strain, low

charge carrier density inhomogeneity, and electron-electron

interactions that are not screened by the environment. The

device consists of an exfoliated graphene flake on a Si=SiO2

substrate, contacted with Cr=Au contacts and suspended

by etching away ≈160 nm of SiO2. A subsequent current

annealing step [34] gives rise to a carrier mobility exceeding

400 000 cm2ðVsÞ and a charge inhomogeneity of less than

n� ≈ 109 cm−2 (see Supplemental Material [35]), which

allow the observation of MPRs below 4 T [22–30]. The

Si back gate permits the tuning of the charge carrier density.

For the magneto-Raman measurements, we utilize a con-

focal, low-temperature micro-Raman setup, which permits

combined optical and transport experiments and is equipped

with a superconducting magnet. We use linearly polarized

laser light (λ ¼ 532 nm) with a power of 0.5 mWand a spot

size of ≈500 nm. The scattered light is detected by a CCD

spectrometer with a grating of 1200 lines=mm. All mea-

surements were performed at a temperature of 4.2 K.

To study magnetophonon resonances as a function of the

charge carrier density, we vary nel ¼ αðVg − V0Þ by tuning
the applied gate voltage Vg, where V0 ¼ −0.2 V accounts

for the residual doping. We extract the lever arm α ¼
3.15 × 1010 cm−2V−1 from a Landau fan measurement

(see Supplemental Material [35]). For each specific Vg, we

sweep B from 0 to 6 T while recording Raman spectra. To

study the coupling of the electronic system to the Raman-

active E2g mode, we extract the position ωG and width ΓG

of the Raman G peak by fitting a single Lorentzian. Their

evolution as a function of the B field for different values of

Vg is shown in Figs. 1(a) and 1(b), respectively. We observe

the resonant coupling of the Raman G mode phonon

[22–28] to electronic transitions when its bare energy εph ¼
ℏωGðB ¼ 0 T; nel ¼ 0 cm−2Þ≡ ℏω0 matches the energy

of a transition between the discrete LLs. Most prominently,

this coupling results in a decrease of the phonon lifetime

due to the excitation of electron-hole pairs, which results in

an increased width ΓG of the Raman G peak at resonance.

To first order in the perturbation theory, the E2g phonon

couples only to LL excitations with Δn ¼ �1 [29,30]. We

thus focus on the coupling to LL transitions whose energies

are given by Tn ¼ εnþ1 − ε
−n [see Figs. 1(c) and 1(d)].

Note that the influence of excitonic effects on Tn is

neglected here and will be discussed later in this Letter.

The resonance condition εph ¼ Tn can be expressed as

ℏω0 ¼ vF;Tn
ðBTn

; nelÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eℏBTn

q

ð
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

þ
ffiffiffi

n
p

Þ; ð1Þ

where we define an effective Fermi velocity vF;Tn
of the

transition Tn via vF;Tn
≡ Tn=½

ffiffiffiffiffiffiffiffiffiffiffi

2eℏB
p

ð
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

þ ffiffiffi

n
p Þ�

[41]. By measuring ω0 and the value of the B field at

which the resonance occurs, BTn
, we can thus extract the

effective Fermi velocity vF;Tn
ðB ¼ BTn

; nelÞ. The experi-

mentally determined vF;Tn
evidently contains all correc-

tions from electron-electron interactions. Hence, the

position of the MPR provides a direct probe of the

renormalized transition energy, parametrized by vF;Tn
. In

particular, we are able to probe the charge carrier density

dependence of vF;Tn
by varying Vg.

In the following, we focus on the charge carrier density

dependence of the T1 transition [28–30], which gives rise to

a resonance at BT1
≈ 3 T [Figs. 1(a) and 1(b)]. Increasing

jnelj leads both to an increase of BT1
[compare black and

red arrows in Figs. 1(a) and 1(b)] and to a decrease of the

strength of the T1-MPR, which we define as the maximum

value of ΓG at the resonance BT1
, Γ

max
G;T1

. For a more

quantitative analysis, we fit single Lorentzians to ΓG

[Fig. 1(b)] as a function of B around the T1-MPR to obtain

Γ
max
G;T1

and BT1
[see Figs. 2(a) and 2(b)]. The observed
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FIG. 1. (a), (b) Position and width of the Raman G peak as a

function of the B field and gate voltage (graphs offset for clarity;

compare horizontal dashed lines). Black and orange arrows high-

light the T1-MPR positions for Vg ¼ 0 and 14.5 V, respectively.

Dashed black curves represent our theoretical calculation [35],

and full black lines depict Lorentzian fits to ΓG near the T1-MPR.

Inset: False-color scanning electron micrograph of the measured

device. The white dot represents the laser spot, and the scale bar is

2 μm. (c) Illustration of the LL transition energies and density

of states near EF. (d) Full lines: LL transition energies for

vF ¼ 1.35 × 106 m=s. Dashed line: Phonon energy at B ¼ 0 T.
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behavior of Γmax
G;T1

with nel can be understood in terms of the

increasing filling of different LLs and the resulting Pauli

blocking. For small jnelj, the Fermi energy stays within the

zeroth LL and, hence, Γmax
G;T1

remains constant, as the T1

transition involves only the transitions −1 → þ2 and

−2 → þ1. For higher values of jnelj, the states belonging

to the first LL are filled, and more and more of the

degenerate LL transitions become blocked. The decrease

of Γmax
G;T1

with jnelj is in good agreement with the theoretical

prediction [blue line in Fig. 2(a); also see Supplemental

Material [35]], while the linear scaling results from the

linear filling of the LLs with nel.
Next, we analyze the charge carrier density dependence

of the position BT1
of the T1-MPR [see Fig. 2(b)].

According to Eq. (1), BT1
depends only on the value of

the phonon frequency ω0 and on vF;T1
. We rule out changes

of ω0 due to tensile strain from electrostatically pulling the

graphene flake as the origin of the observed shift in BT1
,

since the observed variation of ω0 is negligible (less than

2 cm−1; see Supplemental Material [35]). Furthermore,

tensile strain would soften ω0; i.e., it would lead to a

decrease of BT1
with increasing nel. Thus, the shift of BT1

can be caused only by a change of the LL excitation

energies, as described by an nel-dependent effective Fermi

velocity vF;T1
. For a quantitative analysis of vF;T1

ðnelÞ, we
employ Eq. (1) and the extracted BT1

to calculate vF as a

function of nel (see Fig. 3). We obtain an effective Fermi

velocity ranging from vF;T1
≈ 1.36 × 106 m=s close to

the charge neutrality point to vF;T1
≈ 1.24 × 106 m=s at

jnelj ¼ 0.4 × 1012 cm−2. Most interestingly, we do not

observe a logarithmically divergent behavior close to the

CNP, as is the case in the low B field regime (see the inset in

Fig. 3) [13,14]. Instead, we find a finite, linear decrease of

vF;T1
as a function of jnelj. We attribute this linear behavior

to the degeneracy of the states within one LL. Because of

the degeneracy, the contribution of a certain LL to the

renormalization of vF;T1
effectively equals the sum of

the contributions of all its states weighted by the filling

of the LL. Since the partial filling factor scales linearly with

nel, so does the renormalization of vF;T1
, as long as nel is

varied in a range for which the Fermi level EF stays within

a single LL. When EF enters a different LL, the slope of

vF;T1
changes as the contribution of a different LL is

now added.

We confirm this qualitative argument and the experi-

mental observation by quantitative calculations on the level

of the Hartree-Fock approximation (HFA) within a tight-

binding model [33] (see Supplemental Material [35]). In

the HFA, the single-particle LL energies are renormalized

by contributions from all occupied states via the direct

Coulomb (Hartree term) and exchange interactions (Fock

term): εnðB; nelÞ ¼ ε0nðBÞ þ Σ
HF
n ðB; nelÞ, where ε0n denotes

the bare LL energies and

Σ
HF
n ðB; nelÞ ¼

1

Nm

X

m

Σ
HF
n;mðB; nelÞ

¼ 1

Nm

X

m

X

n0;m0
ν̄n0ðB; nelÞ

×

�

2vHartðn;mÞ;
ðn0 ;m0Þ

ðBÞ − vFockðn;mÞ;
ðn0 ;m0Þ

ðBÞ
�

ð2Þ
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FIG. 2. (a) G peak width at the T1-MPR and (b) position of the

T1-MPR as a function of nel. Blue line: Theoretical calculation

[35] with the average parameters from all measurements. Upper

axis: Filling factor ν ¼ nelh=ðeBÞ at B ¼ 3 T.
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FIG. 3. Effective Fermi velocity as a function of nel. Solid
(dashed) line: Calculation without (with) considering the

excitonic binding energy. Gray-shaded area: Uncertainty due

to B-field-dependent renormalization [19,42]. Upper axis: Filling

factor ν at B ¼ 3T. Inset: vF in the presence of LLs (black dots

and lines as in main panel) and at a low B field (blue dots from

Ref. [13], purple squares from SdHO measurements on our

device). Blue line: Theoretical expectation at low B field.

Illustrations: Renormalization of the band structure with nel at
a low (left) and high (right) B field.
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is the self-energy of LL n, averaged over all Nm degenerate

states, labeled by the quantum number m [43], and

vHart;Fockðn;mÞ;ðn0;m0ÞðBÞ represent the direct Coulomb and exchange

matrix elements, respectively, between the LL states jn;mi
and jn0; m0i. Finally, ν̄nðB; nelÞ ¼ nelh=ð4eBÞ − nþ 1=2
denotes the partial filling factor of LL n, which is set to

0 (1) for ν̄n < 0 (>1) and equals the occupancy of LL n.
Including the Hartree-Fock correction, the Tn-transition

energy reads

TnðB; nelÞ ¼ ε0nþ1
− ε0

−n þ Σ
HF
nþ1

− Σ
HF
−n: ð3Þ

To account for the intrinsic screening of the graphene sheet,

we use an effective dielectric constant of ϵ ¼ 3.1 to screen

all Coulomb matrix elements by an additional factor of 1=ϵ,
in agreement with earlier work [13]. Expressing TnðB; nelÞ
in terms of the effective Fermi velocity vF;Tn

[compare

Eq. (1)], Eq. (3) implies

vF;Tn
ðnelÞ ¼ vF;Tn

ðn0elÞ þ
ΔΣ

HF
nþ1

ðnelÞ − ΔΣ
HF
−nðnelÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eℏBTn

p

ð
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

þ ffiffiffi

n
p Þ

; ð4Þ

whereΔΣHF
n ðnelÞ ¼ Σ

HF
n ðnelÞ − Σ

HF
n ðn0elÞ denotes the differ-

ence in self-energies and n0el ¼ 0 cm−2. Note that, in this

difference, all contributions from states outside the energy

window defined by n0el and nel drop out for a constant B

field, as their occupancies do not change. This applies, in

particular, to contributions from states deep inside the

valence band, beyond the UV cutoff in renormalization

group approaches [9,10,13]. These states influence only the

overall scale of vF, represented by vF;T1
ðn0elÞ. We exper-

imentally extract vF;T1
ðn0elÞ ¼ 1.35 × 106 m=s and use it as

input for our calculation. As seen in Fig. 3, our calculation

predicts a piecewise-linear vFðnelÞ, which is in excellent

agreement with our experimental results [42] and very

recent theoretical work [44].

In order to compare vF;T1
with measurements of vF at

low B fields extracted by transport experiments [13,14], it

is important to discuss the so far neglected excitonic effects

in our MPR analysis. As we probe electron-hole pair

excitations, the experimentally extracted LL transition

energies Tn ¼ εnþ1 − ε
−n þ εbindnþ1;−n include a (negative)

binding energy of the electron-hole pair εbindnþ1;−n.

Consequently, our experimentally extracted vF;T1
ðn0elÞ

already contains an excitonic component of δvbindF;T1
¼

εbind
2;−1=½

ffiffiffiffiffiffiffiffiffiffiffi

2eℏB
p

ð
ffiffiffi

2
p

þ 1Þ� [compare Eq. (1)]. To correct

for the excitonic effects and thus permit a sensible

comparison to the vF extracted from transport measure-

ments, we estimate εbindnþ1;−n by approximating it as the

difference of the direct and exchange Coulomb matrix

elements, averaged over all possible pairs of degenerate LL

states:

εbindnþ1;−n ¼ 1=N2
m

X

m;m0

�

vHartðnþ1;mÞ;
ð−n;m0Þ

− vFockðnþ1;mÞ;
ð−n;m0Þ

�

: ð5Þ

The numerical evaluation of this expression yields an

nel-independent estimate of εbind
2;−1 ≈ −6 meV, when includ-

ing the screening factor of 1=ϵ. When correcting vF;T1
for

δvbindF;T1
, we obtain values for the effective Fermi velocity

without any excitonic effects, as shown as the black dashed

line in Fig. 3.

The inset in Fig. 3 shows a comparison of vF for

low magnetic fields (B < 0.5 T) and in the presence

of LLs (≈3 T). The purple squares represent vFðnelÞ at

low B fields, extracted from temperature-dependent

Shubnikov–de Haas oscillation (SdHO) measurements

(see Supplemental Material [35]) taken on the same device

used for our MPR study. They are in good agreement with

the logarithmic behavior of vF at low B fields reported by

Elias et al. [13] (blue dots and line). Most interestingly,

there is a striking difference in the nel dependence between
vF extracted at low B fields from transport experiments and

vF;T1
determined at high B fields from our optical mea-

surements. Note that the magneto-Raman measurements

always probe vF away from the Dirac point at approx-

imately half the phonon energy (≈100 meV), while trans-

port experiments extract the band slope at the Fermi

surface. However, previous ARPES [16] and scanning

tunneling spectroscopy [17] studies established that the

renormalized bands remain linear within an energy window

around the CNP of at least 200 meV (see the left schematic

in the inset in Fig. 3). As we both probe vF and tune the

Fermi energy within this energy window, the exact energy

at which vF is probed is irrelevant. Consequently, it is

justified to compare our results to the ones from transport

measurements at low B fields. Since the excitonic correc-

tion cannot account for the change in effective Fermi

velocities, we conclude that the difference in vF is not

due to the way in which vF is determined but rather due to

the difference in electron-electron interaction at low B
fields and in the presence of LLs. At low B fields, the self-

energy correction to vF diverges due to the long-range

behavior of the Coulomb interaction and the delocalized

nature of the Dirac electrons at the K point. By contrast,

high magnetic fields exponentially localize the electronic

wave functions once LLs are present, with a decay constant

on the order of the magnetic length lB (see Supplemental

Material [35]). As a result, the long-range divergence is

eliminated.

In conclusion, we studied the charge carrier density

dependence of the effective Fermi velocity in the presence

of LLs by studying magnetophonon resonances. In contrast

to the logarithmic renormalization of vF at low magnetic

fields, we find that vF remains finite in the LL regime.

While the suppression of the divergence of the exchange

self-energy can be traced back to the confinement of the
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electron wave function in a magnetic field, the observed

linear scaling of vF with nel can be attributed to the

degeneracy of the LLs. Tight-binding calculations quanti-

tatively verify our experimental findings, confirming that

electron-electron interactions can indeed change dramati-

cally for different magnetic field regimes. The general

insight into the influence of many-body effects on elec-

tronic excitation in strong magnetic fields gained from our

findings makes them also applicable to the study of other

low-dimensional materials and can be of great value for the

effective tuning of material properties.
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