000877736 001__ 877736
000877736 005__ 20210130005235.0
000877736 0247_ $$2doi$$a10.1002/andp.201700082
000877736 0247_ $$2ISSN$$a0003-3804
000877736 0247_ $$2ISSN$$a1521-3889
000877736 0247_ $$2altmetric$$aaltmetric:21429107
000877736 0247_ $$2WOS$$aWOS:000414808800019
000877736 037__ $$aFZJ-2020-02433
000877736 082__ $$a530
000877736 1001_ $$0P:(DE-HGF)0$$aSomanchi, Sowmya$$b0
000877736 245__ $$aFrom Diffusive to Ballistic Transport in Etched Graphene Constrictions and Nanoribbons
000877736 260__ $$aLeipzig$$bBarth88001$$c2017
000877736 3367_ $$2DRIVER$$aarticle
000877736 3367_ $$2DataCite$$aOutput Types/Journal article
000877736 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593437310_5997
000877736 3367_ $$2BibTeX$$aARTICLE
000877736 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877736 3367_ $$00$$2EndNote$$aJournal Article
000877736 520__ $$aGraphene nanoribbons and constrictions are envisaged as fundamental components of future carbon‐based nanoelectronic and spintronic devices. At nanoscale, electronic effects in these devices depend heavily on the dimensions of the active channel and the nature of edges. Hence, controlling both these parameters is crucial to understand the physics in such systems. This review is about the recent progress in the fabrication of graphene nanoribbons and constrictions in terms of low temperature quantum transport. In particular, recent advancements using encapsulated graphene allowing for quantized conductance and future experiments towards exploring spin effects in these devices are presented. The influence of charge carrier inhomogeneity and the important length scales which play a crucial role for transport in high quality samples are also discussed.
000877736 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000877736 588__ $$aDataset connected to CrossRef
000877736 7001_ $$0P:(DE-HGF)0$$aTerrés, Bernat$$b1
000877736 7001_ $$0P:(DE-HGF)0$$aPeiro, Julian$$b2
000877736 7001_ $$0P:(DE-HGF)0$$aStaggenborg, Maximilian$$b3
000877736 7001_ $$0P:(DE-HGF)0$$aWatanabe, Kenji$$b4
000877736 7001_ $$0P:(DE-HGF)0$$aTaniguchi, Takashi$$b5
000877736 7001_ $$0P:(DE-Juel1)178028$$aBeschoten, Bernd$$b6$$ufzj
000877736 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b7$$eCorresponding author$$ufzj
000877736 773__ $$0PERI:(DE-600)1479791-4$$a10.1002/andp.201700082$$gVol. 529, no. 11, p. 1700082 -$$n11$$p1700082 -$$tAnnalen der Physik$$v529$$x0003-3804$$y2017
000877736 8564_ $$uhttps://juser.fz-juelich.de/record/877736/files/andp.201700082-1.pdf
000877736 8564_ $$uhttps://juser.fz-juelich.de/record/877736/files/andp.201700082-1.pdf?subformat=pdfa$$xpdfa
000877736 909CO $$ooai:juser.fz-juelich.de:877736$$pVDB
000877736 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANN PHYS-BERLIN : 2018$$d2020-01-15
000877736 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-15
000877736 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-15
000877736 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-15
000877736 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-15
000877736 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-15
000877736 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-15
000877736 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-15
000877736 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-15
000877736 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-15
000877736 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-15
000877736 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-15
000877736 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877736 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877736 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877736 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000877736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178028$$aForschungszentrum Jülich$$b6$$kFZJ
000877736 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)178028$$aRWTH Aachen$$b6$$kRWTH
000877736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b7$$kFZJ
000877736 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180322$$aRWTH Aachen$$b7$$kRWTH
000877736 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000877736 920__ $$lyes
000877736 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000877736 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000877736 980__ $$ajournal
000877736 980__ $$aVDB
000877736 980__ $$aI:(DE-Juel1)PGI-9-20110106
000877736 980__ $$aI:(DE-82)080009_20140620
000877736 980__ $$aUNRESTRICTED