000877737 001__ 877737 000877737 005__ 20210130005235.0 000877737 0247_ $$2doi$$a10.1063/1.5000545 000877737 0247_ $$2ISSN$$a0003-6951 000877737 0247_ $$2ISSN$$a1077-3118 000877737 0247_ $$2ISSN$$a1520-8842 000877737 0247_ $$2Handle$$a2128/25173 000877737 0247_ $$2altmetric$$aaltmetric:24840152 000877737 0247_ $$2WOS$$aWOS:000413196100019 000877737 037__ $$aFZJ-2020-02434 000877737 082__ $$a530 000877737 1001_ $$0P:(DE-HGF)0$$aDrögeler, Marc$$b0 000877737 245__ $$aDry-transferred CVD graphene for inverted spin valve devices 000877737 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2017 000877737 3367_ $$2DRIVER$$aarticle 000877737 3367_ $$2DataCite$$aOutput Types/Journal article 000877737 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593510329_1666 000877737 3367_ $$2BibTeX$$aARTICLE 000877737 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000877737 3367_ $$00$$2EndNote$$aJournal Article 000877737 520__ $$aIntegrating high-mobility graphene grown by chemical vapor deposition (CVD) into spin transport devices is one of the key tasks in graphene spintronics. We use a van der Waals pick-up technique to transfer CVD graphene by hexagonal boron nitride (hBN) from the copper growth substrate onto predefined Co/MgO electrodes to build inverted spin valve devices. Two approaches are presented: (i) a process where the CVD-graphene/hBN stack is first patterned into a bar and then transferred by a second larger hBN crystal onto spin valve electrodes and (ii) a direct transfer of a CVD-graphene/hBN stack. We report record high spin lifetimes in CVD graphene of up to 1.75 ns at room temperature. Overall, the performances of our devices are comparable to devices fabricated from exfoliated graphene also revealing nanosecond spin lifetimes. We expect that our dry transfer methods pave the way towards more advanced device geometries not only for spintronic applications but also for CVD-graphene-based nanoelectronic devices in general where patterning of the CVD graphene is required prior to the assembly of final van der Waals heterostructures.We acknowledge funding from the European Union Seventh Framework Programme under Grant Agreement No. 604391 Graphene Flagship and the Deutsche Forschungsgemeinschaft (BE 2441/9-1) and support by the Helmholtz Nano Facility (HNF)36 at the Forschungszentrum Jülich. Growth of hexagonal boron nitride crystals was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI Grant Nos. JP26248061, JP15K21722, and JP25106006. 000877737 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0 000877737 588__ $$aDataset connected to CrossRef 000877737 7001_ $$0P:(DE-HGF)0$$aBanszerus, Luca$$b1 000877737 7001_ $$0P:(DE-HGF)0$$aVolmer, Frank$$b2 000877737 7001_ $$0P:(DE-HGF)0$$aTaniguchi, Takashi$$b3 000877737 7001_ $$0P:(DE-HGF)0$$aWatanabe, Kenji$$b4 000877737 7001_ $$0P:(DE-Juel1)178028$$aBeschoten, Bernd$$b5$$ufzj 000877737 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b6$$eCorresponding author$$ufzj 000877737 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.5000545$$gVol. 111, no. 15, p. 152402 -$$n15$$p152402 -$$tApplied physics letters$$v111$$x1077-3118$$y2017 000877737 8564_ $$uhttps://juser.fz-juelich.de/record/877737/files/1.5000545.pdf$$yPublished on 2017-10-09. Available in OpenAccess from 2018-10-09. 000877737 8564_ $$uhttps://juser.fz-juelich.de/record/877737/files/1709.01364.pdf$$yPublished on 2017-10-09. Available in OpenAccess from 2018-10-09. 000877737 8564_ $$uhttps://juser.fz-juelich.de/record/877737/files/1.5000545.pdf?subformat=pdfa$$xpdfa$$yPublished on 2017-10-09. Available in OpenAccess from 2018-10-09. 000877737 8564_ $$uhttps://juser.fz-juelich.de/record/877737/files/1709.01364.pdf?subformat=pdfa$$xpdfa$$yPublished on 2017-10-09. Available in OpenAccess from 2018-10-09. 000877737 909CO $$ooai:juser.fz-juelich.de:877737$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000877737 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH 000877737 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH 000877737 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH 000877737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178028$$aForschungszentrum Jülich$$b5$$kFZJ 000877737 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)178028$$aRWTH Aachen$$b5$$kRWTH 000877737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b6$$kFZJ 000877737 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180322$$aRWTH Aachen$$b6$$kRWTH 000877737 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0 000877737 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14 000877737 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14 000877737 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-14 000877737 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-14 000877737 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000877737 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-14 000877737 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14 000877737 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-14 000877737 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14 000877737 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-14 000877737 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-14 000877737 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2018$$d2020-01-14 000877737 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-14$$wger 000877737 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14 000877737 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-14 000877737 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-14$$wger 000877737 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14 000877737 920__ $$lyes 000877737 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 000877737 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000877737 980__ $$ajournal 000877737 980__ $$aVDB 000877737 980__ $$aI:(DE-Juel1)PGI-9-20110106 000877737 980__ $$aI:(DE-82)080009_20140620 000877737 980__ $$aUNRESTRICTED 000877737 9801_ $$aFullTexts