000877748 001__ 877748
000877748 005__ 20230522125345.0
000877748 0247_ $$2doi$$a10.1080/00036811.2020.1789598
000877748 0247_ $$2Handle$$a2128/31107
000877748 0247_ $$2WOS$$aWOS:000547422000001
000877748 037__ $$aFZJ-2020-02436
000877748 041__ $$aEnglish
000877748 082__ $$a510
000877748 1001_ $$0P:(DE-HGF)0$$aHarris, Isaac$$b0$$eCorresponding author
000877748 245__ $$aAnalysis and computation of the transmission eigenvalues with a conductive boundary condition
000877748 260__ $$c2022
000877748 3367_ $$2DRIVER$$aarticle
000877748 3367_ $$2DataCite$$aOutput Types/Journal article
000877748 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1651654946_783
000877748 3367_ $$2BibTeX$$aARTICLE
000877748 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877748 3367_ $$00$$2EndNote$$aJournal Article
000877748 520__ $$aWe provide a new analytical and computational study of the transmission eigenvalueswith a conductive boundary condition. These eigenvalues are derived fromthe scalar inverse scattering problem for an inhomogeneous material with a conductiveboundary condition. The goal is to study how these eigenvalues depend onthe material parameters in order to estimate the refractive index. The analyticalquestions we study are: deriving Faber-Krahn type lower bounds, the discretenessand limiting behavior of the transmission eigenvalues as the conductivity tends toinfinity for a sign changing contrast. We also provide a numerical study of a newboundary integral equation for computing the eigenvalues. Lastly, using the limitingbehavior we will numerically estimate the refractive index from the eigenvaluesprovided the conductivity is sufficiently large but unknown.
000877748 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000877748 7001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b1$$ufzj
000877748 773__ $$0PERI:(DE-600)1385415-x$$a10.1080/00036811.2020.1789598$$n6$$p1880-1895$$tApplicable analysis$$v101$$x1026-7360$$y2022
000877748 8564_ $$uhttps://juser.fz-juelich.de/record/877748/files/2001.07188.pdf$$yOpenAccess
000877748 8564_ $$uhttps://juser.fz-juelich.de/record/877748/files/TE-CBCpart3_Edit.pdf$$yOpenAccess
000877748 8564_ $$uhttps://juser.fz-juelich.de/record/877748/files/TE-CBCpart3_Edit.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877748 909CO $$ooai:juser.fz-juelich.de:877748$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877748 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aPurdue University$$b0
000877748 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b1$$kFZJ
000877748 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000877748 9141_ $$y2022
000877748 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000877748 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877748 920__ $$lyes
000877748 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000877748 980__ $$ajournal
000877748 980__ $$aVDB
000877748 980__ $$aUNRESTRICTED
000877748 980__ $$aI:(DE-Juel1)JSC-20090406
000877748 9801_ $$aFullTexts