000877750 001__ 877750
000877750 005__ 20210130005237.0
000877750 0247_ $$2doi$$a10.1021/acs.nanolett.7b01845
000877750 0247_ $$2ISSN$$a1530-6984
000877750 0247_ $$2ISSN$$a1530-6992
000877750 0247_ $$2altmetric$$aaltmetric:27832423
000877750 0247_ $$2pmid$$apmid:28906119
000877750 0247_ $$2WOS$$aWOS:000413057500011
000877750 037__ $$aFZJ-2020-02438
000877750 082__ $$a660
000877750 1001_ $$0P:(DE-HGF)0$$aWill, M.$$b0
000877750 245__ $$aHigh Quality Factor Graphene-Based Two-Dimensional Heterostructure Mechanical Resonator
000877750 260__ $$aWashington, DC$$bACS Publ.$$c2017
000877750 3367_ $$2DRIVER$$aarticle
000877750 3367_ $$2DataCite$$aOutput Types/Journal article
000877750 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593524493_1666
000877750 3367_ $$2BibTeX$$aARTICLE
000877750 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877750 3367_ $$00$$2EndNote$$aJournal Article
000877750 520__ $$aUltralight mechanical resonators based on low-dimensional materials are well suited as exceptional transducers of minuscule forces or mass changes. However, the low dimensionality also provides a challenge to minimize resistive losses and heating. Here, we report on a novel approach that aims to combine different two-dimensional (2D) materials to tackle this challenge. We fabricated a heterostructure mechanical resonator consisting of few layers of niobium diselenide (NbSe2) encapsulated by two graphene sheets. The hybrid membrane shows high quality factors up to 245,000 at low temperatures, comparable to the best few-layer graphene mechanical resonators. In contrast to few-layer graphene resonators, the device shows reduced electrical losses attributed to the lower resistivity of the NbSe2 layer. The peculiar low-temperature dependence of the intrinsic quality factor points to dissipation over two-level systems which in turn relax over the electronic system. Our high sensitivity readout is enabled by coupling the membrane to a superconducting cavity which allows for the integration of the hybrid mechanical resonator as a sensitive and low loss transducer in future quantum circuits.
000877750 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000877750 588__ $$aDataset connected to CrossRef
000877750 7001_ $$0P:(DE-HGF)0$$aHamer, M.$$b1
000877750 7001_ $$0P:(DE-HGF)0$$aMüller, M.$$b2
000877750 7001_ $$0P:(DE-HGF)0$$aNoury, A.$$b3
000877750 7001_ $$0P:(DE-HGF)0$$aWeber, P.$$b4
000877750 7001_ $$0P:(DE-HGF)0$$aBachtold, A.$$b5
000877750 7001_ $$0P:(DE-HGF)0$$aGorbachev, R. V.$$b6
000877750 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b7$$eCorresponding author$$ufzj
000877750 7001_ $$0P:(DE-HGF)0$$aGüttinger, J.$$b8
000877750 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.7b01845$$gVol. 17, no. 10, p. 5950 - 5955$$n10$$p5950 - 5955$$tNano letters$$v17$$x1530-6992$$y2017
000877750 8564_ $$uhttps://juser.fz-juelich.de/record/877750/files/acs.nanolett.7b01845.pdf
000877750 8564_ $$uhttps://juser.fz-juelich.de/record/877750/files/acs.nanolett.7b01845.pdf?subformat=pdfa$$xpdfa
000877750 909CO $$ooai:juser.fz-juelich.de:877750$$pVDB
000877750 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877750 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877750 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b7$$kFZJ
000877750 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180322$$aRWTH Aachen$$b7$$kRWTH
000877750 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b8$$kRWTH
000877750 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000877750 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-06
000877750 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-06
000877750 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-06
000877750 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-06
000877750 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-06
000877750 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-06
000877750 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-06
000877750 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000877750 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-06
000877750 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2018$$d2020-01-06
000877750 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-06
000877750 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-06
000877750 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2018$$d2020-01-06
000877750 920__ $$lyes
000877750 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000877750 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000877750 980__ $$ajournal
000877750 980__ $$aVDB
000877750 980__ $$aI:(DE-Juel1)PGI-9-20110106
000877750 980__ $$aI:(DE-82)080009_20140620
000877750 980__ $$aUNRESTRICTED