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Recently, a contamination-free dry transfer method for graphene grown by chemical vapor depo-
sition (CVD) has been reported that allows to directly pick-up graphene from the copper growth
substrate using a flake of hexagonal boron nitride (hBN), resulting in ultrahigh charge carrier mo-
bility and low overall doping. Here, we report that not only hBN, but also flakes of molybdenum
disulfide (MoS2) can be used to dry transfer graphene. This, on one hand, allows for the fab-
rication of complex van-der-Waals heterostructures using CVD graphene combined with different
two-dimensional materials and, on the other hand, can be a route towards a scalable dry transfer of
CVD graphene. The resulting heterostructures are studied using low temperature transport mea-
surements revealing a strong charge carrier density dependence of the carrier mobilities (up to values
of 12,000 cm2/(Vs)) and the residual charge carrier density fluctuations near the charge neutrality
point when changing the carrier density in the MoS2 by applying a top gate voltage.

The high room temperature mobility1–3 and the tun-
able charge carrier density make graphene an interest-
ing material for many applications such as high fre-
quency electronics4, ultra-sensitive Hall sensors5,6 and
spintronics7,8. In order to realize such applications, it
is necessary to make high quality graphene available on
a large scale. Graphene grown by chemical vapor depo-
sition (CVD) has recently made numerous advances con-
cerning its growth9–12 and transfer13–16. We previously
reported that the electronic properties of CVD graphene
are equivalent to devices built from high quality exfoli-
ated graphene if transfer-related degradations and con-
taminations are avoided3,13. The highest electronic qual-
ity in CVD graphene has so far been achieved by us-
ing exfoliated hexagonal boron nitride (hBN) crystals by
(1) picking-up CVD-graphene directly from the catalytic
copper foil (substrate material) and by (2) subsequently
encapsulating it with another hBN crystal3. Here, we
report on CVD-graphene that has been dry-transferred
from the copper foil using a similar scheme. Instead of
hBN, we use molybdenum disulfide (MoS2) to transfer
graphene. Expanding this transfer process from using
flakes of exfoliated hexagonal boron nitride to a larger
class of two-dimensional (2d) materials has numerous
advantages: Firstly, van-der-Waals heterostructures con-
sisting of different 2d materials have attracted large at-
tention in recent years, as they allow for new device prop-
erties, e.g. proximity induced spin-orbit interaction17,18

or applications in the field of optoelectronics19. Secondly,
high quality large area hBN with a low adhesion to its
substrate has not been successfully grown so far, which
limits the size of the heterostructures that can be ob-
tained using the dry transfer to the size of the exfoliated
hBN flake. Thus, finding alternative, scalable 2d materi-
als to transfer graphene and to serve as a substrate that
preserves the intrinsic electronic properties of graphene
could speed up the scaling, opening up the way towards
true high quality graphene applications. Transition metal
dichalcogenides (TMDCs) such as MoS2 can by now be

grown on different substrate materials20–22 such as sap-
phire with high structural and electronic quality. Besides
opening up a larger set of possible material combinations
to enable new device functionalities, using a broader set
of synthetic and thus potentially scalable 2d materials for
the transfer could be a future route towards scaling high
quality CVD graphene to arbitrary sizes. Our findings
suggests that, similar to the established stacking tech-
niques for exfoliated van-der-Waals materials2 a much
wider range of 2d materials can be used for the transfer
process.

Graphene is grown using a low pressure CVD pro-
cess on the inside of enclosures folded from copper
foil9, resulting in individual graphene crystals of a few
hundred micrometer in size on the copper. In order
to weaken the adhesion between the graphene and the
copper substrate and thus facilitate the transfer process,
the graphene is stored under ambient conditions for a
few days, during which a thin cuprous oxide (Cu2O)
layer forms at the graphene-to-Cu interface13,23. An
optical image of a typical graphene crystal with an
oxidized interface is shown in Fig. 1a. Following our
previous reports on dry graphene transfer3,13, a polymer
stack consisting of a thick layer of poly(vinyl alcohol)
(PVA) and a thin layer of poly(methyl methacrylate)
(PMMA) is prepared. After exfoliating MoS2 flakes of
various thicknesses between 10 nm and 70 nm on the
polymer, the stack is placed on a polydimethylsiloxane
(PDMS) stamp. Using a mask aligner, the TMDC
is brought into contact with the graphene at 125 ◦C.
After picking-up the graphene, the MoS2/graphene
stack is placed on an exfoliated hBN flake. Thereafter,
the polymers are dissolved in water, acetone and iso-
propanol. Fig. 1b shows an optical microscope image of
a heterostructure consisting of hBN, graphene and MoS2.

We use scanning confocal Raman microscopy which
is a fast and non-invasive optical method to probe
the structural and electronic properties of graphene
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van-der-Waals materials.

In this work, we demonstrated that MoS2 crystals
can be used to delaminate CVD graphene from the
underlying copper showing that the dry transfer method
can potentially be applied to a large number of other
2d materials resulting in more complex van-der-Waals
heterostructures. This allows for tailoring the electronic
properties of the resulting heterostructure by combining
appropriate combinations of 2d materials, as has been
demonstrated previously in heterostructures assembles
from exfoliated flakes. Confocal Raman microscopy ver-
ifies the high structural quality, reflected in a low values
of Γ2D. Low temperature transport measurements show
carrier mobilities on the order of µ = 10,000 cm2/(Vs),
which are lower than what has been reported for dry
transferred CVD graphene encapsulated in hBN. We
attribute this observation to scattering with a strongly
varying disorder potential and charge transfer into trap
states present in the MoS2. We demonstrate that both,

the charge carrier mobility, as well as the charge carrier
density fluctuations at the charge neutrality point of
the graphene are affected by the disorder potential
and charge traps. By increasing the charge carrier
density in the MoS2 by a top gate voltage, its scattering
potential can be screened, allowing to tune the electronic
properties of the graphene.
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