000877753 001__ 877753
000877753 005__ 20210130005238.0
000877753 0247_ $$2doi$$a10.1088/2053-1583/aa5b0f
000877753 0247_ $$2Handle$$a2128/25200
000877753 0247_ $$2WOS$$aWOS:000424402400002
000877753 037__ $$aFZJ-2020-02441
000877753 082__ $$a530
000877753 1001_ $$0P:(DE-HGF)0$$aBanszerus, L.$$b0
000877753 245__ $$aIdentifying suitable substrates for high-quality graphene-based heterostructures
000877753 260__ $$aBristol$$bIOP Publ.$$c2017
000877753 3367_ $$2DRIVER$$aarticle
000877753 3367_ $$2DataCite$$aOutput Types/Journal article
000877753 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593524292_1664
000877753 3367_ $$2BibTeX$$aARTICLE
000877753 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877753 3367_ $$00$$2EndNote$$aJournal Article
000877753 520__ $$aWe report on a scanning confocal Raman spectroscopy study investigating the strain-uniformity and the overall strain and doping of high-quality chemical vapour deposited (CVD) graphene-based heterostuctures on a large number of different substrate materials, including hexagonal boron nitride (hBN), transition metal dichalcogenides, silicon, different oxides and nitrides, as well as polymers. By applying a hBN-assisted, contamination free, dry transfer process for CVD graphene, high-quality heterostructures with low doping densities and low strain variations are assembled. The Raman spectra of these pristine heterostructures are sensitive to substrate-induced doping and strain variations and are thus used to probe the suitability of the substrate material for potential high-quality graphene devices. We find that the flatness of the substrate material is a key figure for gaining, or preserving high-quality graphene.
000877753 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000877753 588__ $$aDataset connected to CrossRef
000877753 7001_ $$0P:(DE-HGF)0$$aJanssen, H.$$b1
000877753 7001_ $$0P:(DE-HGF)0$$aOtto, M.$$b2
000877753 7001_ $$0P:(DE-HGF)0$$aEpping, A.$$b3
000877753 7001_ $$0P:(DE-HGF)0$$aTaniguchi, T.$$b4
000877753 7001_ $$0P:(DE-HGF)0$$aWatanabe, K.$$b5
000877753 7001_ $$0P:(DE-Juel1)178028$$aBeschoten, Bernd$$b6$$ufzj
000877753 7001_ $$0P:(DE-HGF)0$$aNeumaier, D.$$b7
000877753 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b8$$eCorresponding author$$ufzj
000877753 773__ $$0PERI:(DE-600)2779376-X$$a10.1088/2053-1583/aa5b0f$$gVol. 4, no. 2, p. 025030 -$$n2$$p025030 -$$t2D Materials$$v4$$x2053-1583$$y2017
000877753 8564_ $$uhttps://juser.fz-juelich.de/record/877753/files/Banszerus_2017_2D_Mater._4_025030.pdf
000877753 8564_ $$uhttps://juser.fz-juelich.de/record/877753/files/1610.08773.pdf$$yPublished on 2017-02-08. Available in OpenAccess from 2018-02-08.
000877753 8564_ $$uhttps://juser.fz-juelich.de/record/877753/files/Banszerus_2017_2D_Mater._4_025030.pdf?subformat=pdfa$$xpdfa
000877753 8564_ $$uhttps://juser.fz-juelich.de/record/877753/files/1610.08773.pdf?subformat=pdfa$$xpdfa$$yPublished on 2017-02-08. Available in OpenAccess from 2018-02-08.
000877753 909CO $$ooai:juser.fz-juelich.de:877753$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877753 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877753 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877753 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000877753 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178028$$aForschungszentrum Jülich$$b6$$kFZJ
000877753 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)178028$$aRWTH Aachen$$b6$$kRWTH
000877753 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b8$$kFZJ
000877753 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180322$$aRWTH Aachen$$b8$$kRWTH
000877753 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000877753 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-18
000877753 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-18
000877753 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877753 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$b2D MATER : 2018$$d2020-01-18
000877753 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$b2D MATER : 2018$$d2020-01-18
000877753 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-18
000877753 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-18
000877753 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-18
000877753 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-18
000877753 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-18
000877753 920__ $$lyes
000877753 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000877753 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000877753 980__ $$ajournal
000877753 980__ $$aVDB
000877753 980__ $$aUNRESTRICTED
000877753 980__ $$aI:(DE-Juel1)PGI-9-20110106
000877753 980__ $$aI:(DE-82)080009_20140620
000877753 9801_ $$aFullTexts