001     877753
005     20210130005238.0
024 7 _ |a 10.1088/2053-1583/aa5b0f
|2 doi
024 7 _ |a 2128/25200
|2 Handle
024 7 _ |a WOS:000424402400002
|2 WOS
037 _ _ |a FZJ-2020-02441
082 _ _ |a 530
100 1 _ |a Banszerus, L.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Identifying suitable substrates for high-quality graphene-based heterostructures
260 _ _ |a Bristol
|c 2017
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1593524292_1664
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report on a scanning confocal Raman spectroscopy study investigating the strain-uniformity and the overall strain and doping of high-quality chemical vapour deposited (CVD) graphene-based heterostuctures on a large number of different substrate materials, including hexagonal boron nitride (hBN), transition metal dichalcogenides, silicon, different oxides and nitrides, as well as polymers. By applying a hBN-assisted, contamination free, dry transfer process for CVD graphene, high-quality heterostructures with low doping densities and low strain variations are assembled. The Raman spectra of these pristine heterostructures are sensitive to substrate-induced doping and strain variations and are thus used to probe the suitability of the substrate material for potential high-quality graphene devices. We find that the flatness of the substrate material is a key figure for gaining, or preserving high-quality graphene.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Janssen, H.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Otto, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Epping, A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Taniguchi, T.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Watanabe, K.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Beschoten, Bernd
|0 P:(DE-Juel1)178028
|b 6
|u fzj
700 1 _ |a Neumaier, D.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Stampfer, Christoph
|0 P:(DE-Juel1)180322
|b 8
|e Corresponding author
|u fzj
773 _ _ |a 10.1088/2053-1583/aa5b0f
|g Vol. 4, no. 2, p. 025030 -
|0 PERI:(DE-600)2779376-X
|n 2
|p 025030 -
|t 2D Materials
|v 4
|y 2017
|x 2053-1583
856 4 _ |u https://juser.fz-juelich.de/record/877753/files/Banszerus_2017_2D_Mater._4_025030.pdf
856 4 _ |y Published on 2017-02-08. Available in OpenAccess from 2018-02-08.
|u https://juser.fz-juelich.de/record/877753/files/1610.08773.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/877753/files/Banszerus_2017_2D_Mater._4_025030.pdf?subformat=pdfa
856 4 _ |y Published on 2017-02-08. Available in OpenAccess from 2018-02-08.
|x pdfa
|u https://juser.fz-juelich.de/record/877753/files/1610.08773.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877753
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)178028
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)178028
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)180322
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)180322
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-18
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b 2D MATER : 2018
|d 2020-01-18
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b 2D MATER : 2018
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21