000877756 001__ 877756
000877756 005__ 20220126162552.0
000877756 0247_ $$2doi$$a10.1007/s00128-020-02905-x
000877756 0247_ $$2ISSN$$a0007-4861
000877756 0247_ $$2ISSN$$a1432-0800
000877756 0247_ $$2altmetric$$aaltmetric:84394058
000877756 0247_ $$2pmid$$apmid:32564099
000877756 0247_ $$2WOS$$aWOS:000541395900002
000877756 037__ $$aFZJ-2020-02444
000877756 041__ $$aEnglish
000877756 082__ $$a570
000877756 1001_ $$0P:(DE-HGF)0$$aLu, Wenlong$$b0$$eFirst author
000877756 245__ $$aLead Tolerance and Enrichment Characteristics of Several Ornamentals Under Hydroponic Culture
000877756 260__ $$aHeidelberg]$$bSpringer$$c2020
000877756 3367_ $$2DRIVER$$aarticle
000877756 3367_ $$2DataCite$$aOutput Types/Journal article
000877756 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641883777_25030
000877756 3367_ $$2BibTeX$$aARTICLE
000877756 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877756 3367_ $$00$$2EndNote$$aJournal Article
000877756 500__ $$aKein post-print vorhanden
000877756 520__ $$aThe growth response, tolerance, and enrichment characteristics of six ornamental species, Chlorophytum comosum, Calendula officinalis, Iris lacteal, Belamcanda chinensis, Saponaria officinalis, and Polygonum lapathifolium were studied under hydroponic culture with lead (Pb) concentrations ranging from 0 to 1000 mg/L. The results showed that the growth of the tested ornamental species under Pb stress was inhibited. Belamcanda chinensis presented the largest tolerance index (0.75), and Calendula officinalis had the highest toxicity threshold (500 mg/L) under Pb stress. The highest Pb contents in the shoots were detected in Iris lacteal and Belamcanda chinensis. The enrichment coefficients in the shoots of Iris lacteal and Belamcanda chinensis were significantly higher than those in the other ornamental species. In conclusion, Iris lacteal and Belamcanda chinensis are the most tolerant and have the greatest Pb enrichment and translocation abilities under Pb stress, and thus, they have a strong potential to restore Pb-contaminated water bodies and soils
000877756 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000877756 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000877756 588__ $$aDataset connected to CrossRef
000877756 7001_ $$0P:(DE-HGF)0$$aLi, Zhuoran$$b1$$eCollaboration author
000877756 7001_ $$00000-0003-3268-4876$$aShao, Zeqiang$$b2$$eCorresponding author
000877756 7001_ $$0P:(DE-Juel1)180352$$aZheng, Congcong$$b3$$eCollaboration author$$ufzj
000877756 7001_ $$0P:(DE-HGF)0$$aZou, Huijie$$b4$$eCollaboration author
000877756 7001_ $$0P:(DE-HGF)0$$aZhang, Jinjing$$b5$$eCorresponding author
000877756 773__ $$0PERI:(DE-600)1458480-3$$a10.1007/s00128-020-02905-x$$p166–172$$tBulletin of environmental contamination and toxicology$$v105$$x1432-0800$$y2020
000877756 8564_ $$uhttps://juser.fz-juelich.de/record/877756/files/Lu2020_Article_LeadToleranceAndEnrichmentChar.pdf$$yRestricted
000877756 8564_ $$uhttps://juser.fz-juelich.de/record/877756/files/Lu2020_Article_LeadToleranceAndEnrichmentChar.pdf?subformat=pdfa$$xpdfa$$yRestricted
000877756 909CO $$ooai:juser.fz-juelich.de:877756$$pVDB
000877756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180352$$aForschungszentrum Jülich$$b3$$kFZJ
000877756 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000877756 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000877756 9141_ $$y2020
000877756 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-10$$wger
000877756 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-01-10$$wger
000877756 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-10
000877756 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-10
000877756 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-10
000877756 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-10
000877756 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-01-10
000877756 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-10
000877756 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-10
000877756 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-10
000877756 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-10
000877756 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-10
000877756 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-10
000877756 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-10
000877756 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-10
000877756 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bB ENVIRON CONTAM TOX : 2018$$d2020-01-10
000877756 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-10
000877756 920__ $$lno
000877756 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000877756 980__ $$ajournal
000877756 980__ $$aVDB
000877756 980__ $$aI:(DE-Juel1)IBG-2-20101118
000877756 980__ $$aUNRESTRICTED