000877757 001__ 877757
000877757 005__ 20210130005239.0
000877757 0247_ $$2doi$$a10.1063/5.0011107
000877757 0247_ $$2ISSN$$a0021-9606
000877757 0247_ $$2ISSN$$a1089-7690
000877757 0247_ $$2ISSN$$a1520-9032
000877757 0247_ $$2Handle$$a2128/25342
000877757 0247_ $$2altmetric$$aaltmetric:85038264
000877757 0247_ $$2pmid$$apmid:32610976
000877757 0247_ $$2WOS$$aWOS:000546996600001
000877757 037__ $$aFZJ-2020-02445
000877757 082__ $$a530
000877757 1001_ $$0P:(DE-HGF)0$$aKämpf, Kerstin$$b0
000877757 245__ $$aQuasielastic neutron scattering studies on couplings of protein and water dynamics in hydrated elastin
000877757 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2020
000877757 3367_ $$2DRIVER$$aarticle
000877757 3367_ $$2DataCite$$aOutput Types/Journal article
000877757 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1595506131_6840
000877757 3367_ $$2BibTeX$$aARTICLE
000877757 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877757 3367_ $$00$$2EndNote$$aJournal Article
000877757 520__ $$aerforming quasielastic neutron scattering measurements and analyzing both elastic and quasielasic contributions, we study protein and water dynamics of hydrated elastin. At low temperatures, hydration-independent methyl group rotation dominates the findings. It is characterized by a Gaussian distribution of activation energies centered at about Em = 0.17 eV. At ∼195 K, coupled protein–water motion sets in. The hydration water shows diffusive motion, which is described by a Gaussian distribution of activation energies with Em = 0.57 eV. This Arrhenius behavior of water diffusion is consistent with previous results for water reorientation, but at variance with a fragile-to-strong crossover at ∼225 K. The hydration-related elastin backbone motion is localized and can be attributed to the cage rattling motion. We speculate that its onset at ∼195 K is related to a secondary glass transition, which occurs when a β relaxation of the protein has a correlation time of τβ ∼ 100 s. Moreover, we show that its temperature-dependent amplitude has a crossover at the regular glass transition Tg = 320 K of hydrated elastin, where the α relaxation of the protein obeys τα ∼ 100 s. By contrast, we do not observe a protein dynamical transition when water dynamics enters the experimental time window at ∼240 K.
000877757 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000877757 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000877757 588__ $$aDataset connected to CrossRef
000877757 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000877757 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x1
000877757 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000877757 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPHERES: Backscattering spectrometer$$fNL6S$$x0
000877757 7001_ $$00000-0003-4648-4875$$aDemuth, Dominik$$b1
000877757 7001_ $$0P:(DE-Juel1)131056$$aZamponi, Michaela$$b2
000877757 7001_ $$0P:(DE-Juel1)131044$$aWuttke, Joachim$$b3
000877757 7001_ $$0P:(DE-Juel1)130188$$aVogel, Michael$$b4$$eCorresponding author$$ufzj
000877757 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/5.0011107$$gVol. 152, no. 24, p. 245101 -$$n24$$p245101 -$$tThe journal of chemical physics$$v152$$x1089-7690$$y2020
000877757 8564_ $$uhttps://juser.fz-juelich.de/record/877757/files/5.0011107.pdf$$yPublished on 2020-06-30. Available in OpenAccess from 2021-06-30.
000877757 8564_ $$uhttps://juser.fz-juelich.de/record/877757/files/5.0011107.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-06-30. Available in OpenAccess from 2021-06-30.
000877757 909CO $$ooai:juser.fz-juelich.de:877757$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000877757 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131056$$aForschungszentrum Jülich$$b2$$kFZJ
000877757 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131044$$aForschungszentrum Jülich$$b3$$kFZJ
000877757 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130188$$aForschungszentrum Jülich$$b4$$kFZJ
000877757 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000877757 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000877757 9141_ $$y2020
000877757 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000877757 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000877757 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-17
000877757 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877757 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-17
000877757 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000877757 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-17
000877757 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000877757 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17
000877757 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-17
000877757 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2018$$d2020-01-17
000877757 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-17
000877757 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-17$$wger
000877757 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000877757 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-17
000877757 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-17$$wger
000877757 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000877757 920__ $$lyes
000877757 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000877757 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000877757 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x2
000877757 980__ $$ajournal
000877757 980__ $$aVDB
000877757 980__ $$aUNRESTRICTED
000877757 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000877757 980__ $$aI:(DE-588b)4597118-3
000877757 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000877757 9801_ $$aFullTexts