Home > Publications database > Quasielastic neutron scattering studies on couplings of protein and water dynamics in hydrated elastin > print |
001 | 877757 | ||
005 | 20210130005239.0 | ||
024 | 7 | _ | |a 10.1063/5.0011107 |2 doi |
024 | 7 | _ | |a 0021-9606 |2 ISSN |
024 | 7 | _ | |a 1089-7690 |2 ISSN |
024 | 7 | _ | |a 1520-9032 |2 ISSN |
024 | 7 | _ | |a 2128/25342 |2 Handle |
024 | 7 | _ | |a altmetric:85038264 |2 altmetric |
024 | 7 | _ | |a pmid:32610976 |2 pmid |
024 | 7 | _ | |a WOS:000546996600001 |2 WOS |
037 | _ | _ | |a FZJ-2020-02445 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Kämpf, Kerstin |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Quasielastic neutron scattering studies on couplings of protein and water dynamics in hydrated elastin |
260 | _ | _ | |a Melville, NY |c 2020 |b American Institute of Physics |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1595506131_6840 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a erforming quasielastic neutron scattering measurements and analyzing both elastic and quasielasic contributions, we study protein and water dynamics of hydrated elastin. At low temperatures, hydration-independent methyl group rotation dominates the findings. It is characterized by a Gaussian distribution of activation energies centered at about Em = 0.17 eV. At ∼195 K, coupled protein–water motion sets in. The hydration water shows diffusive motion, which is described by a Gaussian distribution of activation energies with Em = 0.57 eV. This Arrhenius behavior of water diffusion is consistent with previous results for water reorientation, but at variance with a fragile-to-strong crossover at ∼225 K. The hydration-related elastin backbone motion is localized and can be attributed to the cage rattling motion. We speculate that its onset at ∼195 K is related to a secondary glass transition, which occurs when a β relaxation of the protein has a correlation time of τβ ∼ 100 s. Moreover, we show that its temperature-dependent amplitude has a crossover at the regular glass transition Tg = 320 K of hydrated elastin, where the α relaxation of the protein obeys τα ∼ 100 s. By contrast, we do not observe a protein dynamical transition when water dynamics enters the experimental time window at ∼240 K. |
536 | _ | _ | |0 G:(DE-HGF)POF3-6G15 |f POF III |x 0 |c POF3-6G15 |a 6G15 - FRM II / MLZ (POF3-6G15) |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) |0 G:(DE-HGF)POF3-6G4 |c POF3-623 |f POF III |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
650 | 2 | 7 | |a Condensed Matter Physics |0 V:(DE-MLZ)SciArea-120 |2 V:(DE-HGF) |x 0 |
650 | 2 | 7 | |a Biology |0 V:(DE-MLZ)SciArea-160 |2 V:(DE-HGF) |x 1 |
650 | 1 | 7 | |a Polymers, Soft Nano Particles and Proteins |0 V:(DE-MLZ)GC-1602-2016 |2 V:(DE-HGF) |x 0 |
693 | _ | _ | |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz |e SPHERES: Backscattering spectrometer |f NL6S |1 EXP:(DE-MLZ)FRMII-20140101 |0 EXP:(DE-MLZ)SPHERES-20140101 |5 EXP:(DE-MLZ)SPHERES-20140101 |6 EXP:(DE-MLZ)NL6S-20140101 |x 0 |
700 | 1 | _ | |a Demuth, Dominik |0 0000-0003-4648-4875 |b 1 |
700 | 1 | _ | |a Zamponi, Michaela |0 P:(DE-Juel1)131056 |b 2 |
700 | 1 | _ | |a Wuttke, Joachim |0 P:(DE-Juel1)131044 |b 3 |
700 | 1 | _ | |a Vogel, Michael |0 P:(DE-Juel1)130188 |b 4 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1063/5.0011107 |g Vol. 152, no. 24, p. 245101 - |0 PERI:(DE-600)1473050-9 |n 24 |p 245101 - |t The journal of chemical physics |v 152 |y 2020 |x 1089-7690 |
856 | 4 | _ | |y Published on 2020-06-30. Available in OpenAccess from 2021-06-30. |u https://juser.fz-juelich.de/record/877757/files/5.0011107.pdf |
856 | 4 | _ | |y Published on 2020-06-30. Available in OpenAccess from 2021-06-30. |x pdfa |u https://juser.fz-juelich.de/record/877757/files/5.0011107.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:877757 |p openaire |p open_access |p driver |p VDB:MLZ |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131056 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131044 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130188 |
913 | 1 | _ | |a DE-HGF |9 G:(DE-HGF)POF3-6G15 |x 0 |4 G:(DE-HGF)POF |v FRM II / MLZ |1 G:(DE-HGF)POF3-6G0 |0 G:(DE-HGF)POF3-6G15 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |b Forschungsbereich Materie |l Großgeräte: Materie |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-623 |2 G:(DE-HGF)POF3-600 |v Facility topic: Neutrons for Research on Condensed Matter |9 G:(DE-HGF)POF3-6G4 |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-17 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-17 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-17 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-17 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-17 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-17 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM PHYS : 2018 |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-17 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-01-17 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-01-17 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-17 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-17 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 0 |
920 | 1 | _ | |0 I:(DE-588b)4597118-3 |k MLZ |l Heinz Maier-Leibnitz Zentrum |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-1-20110106 |k JCNS-1 |l Neutronenstreuung |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
980 | _ | _ | |a I:(DE-588b)4597118-3 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|